4.	$(7\times4=28 \text{ marks})$ Translate into English (Dịch sang tiếng Anh).
1)	Chúng ta nói rằng một tập S là đếm được nếu tồn tại một song ánh từ S lên tập các số tự nhiên $\mathbb{N}.$
2)	Cho S là tập các hàm khả vi trên một khoảng mở $I.$ Lúc đó S là đóng đối với các phép toán cộng và nhân vô hướng.
3)	Tồn tại hay không số tự nhiên m sao cho $m^2 + 5$ chia hết cho 8?
4)	Nếu một không gian vectơ V có một cơ sở gồm n phần tử thì ta bảo V là một không gian vectơ n chiều. Trong không gian vectơ n chiều, mọi họ gồm $n+1$ vectơ đều phụ thuộc tuyến tính.
5)	Nếu A là một ma trận vuông với định thức khác không, thì phương trình tuyến tính $Ax=b$ có nghiệm duy nhất, đó là $x=A^{-1}b$.
6)	Giả sử f là hàm số liên tục trên đoạn $[a,b](a,b\in R,a< b).$ Khi đó
	 f bị chặn trên [a, b]; f đạt giá trị lớn nhất, giá trị nhỏ nhất trên [a, b]; f liên tục đều trên [a, b].
	• J Hen the dea tien [a, b].
7)	Nếu hàm số $f(x)$ có đạo hàm $f'(x)$ không âm trên đoạn $[a,b]$ và $f'(x)$ chỉ triệt tiêu tại hữu hạn điểm của đoạn đó thì $f(x)$ là hàm tăng nghiệm ngặt trên đoạn $[a,b]$.

TRƯỜNG ĐHSP HÀ NÔI KHOA TOÁN - TIN

Số phách

Số phách

Số báo danh

THI HẾT HỌC PHẦN Môn tiếng Anh chuyên ngành Toán Thời gian làm bài: 120 phút- Đề số 1

ÐIỂM		Cán bộ chấm thi thứ nhất:	Tổng số tờ giấy thi:	
Bằng số	Bằng chữ	Cán bộ chấm thi thứ hai:	01 tờ	
1	·	one suitable mathematical học thích hợp vào mỗi chỗ	_	

Example: A set A is called a ...proper subset... of a set B if $A \subset B$ and $A \neq B$.

- 1) If a function is \dots at some point x, then it is continuous at x.
- 2) Vectors x_1, \ldots, x_n is said to be if there are scalars $\alpha_1, \ldots, \alpha_n$, not all of which are 0, such that $\alpha_1 x_1 + \ldots + \alpha_n x_n = 0$.
- 3) If c divides ab and a and c are, then c divides b.
- 4) We define the of a finite-dimensional vector space as the number of elements in a basis for V.
- 5) Each solution of the equation $det(A \lambda I) = 0$ is called an of the square matrix A.
- 6) Two equations are called to each other if they have the same solu-
- 7) The formula $a \equiv b \mod p$ means that a is to b modulo p.
- 8) By $\frac{\partial u}{\partial x}$ we denote the first of the function u with respect to the variable x.
- 9) In mathematics, statements which are accepted to be true without proof are called, while are statements which are proved to be true.
- 10) A polynomial equation of order n with complex coefficients has exactly n complex roots counting
- 2. $(6 \times 2 = 12 \text{ marks})$ There are some mistakes in each of the following sentences/paragraphs. Make necessary corrections to it and rewrite it. (Các câu/đoan sau đây có một số lỗi. Hãy sửa và viết lai mỗi câu/đoan đó.)

Example: The set real numbers x satisfy both x < 0 and x > 1 are empty. \rightarrow The set of real numbers x satisfying both x < 0 and x > 1 is empty.

THI HẾT HỌC PHẦN
BÀI THI MÔN
Họ và tên:
Ngày sinh:
Lớp:
Mã số sinh viên:
PHÒNG THI SỐ
Cán bộ coi thi thứ nhất:

Cán bô coi thi thứ hai:

1) Let f is a continuous function on a closed finite interval $[a,b]$. Then f is bounded and uniform continuous on that interval.	2) It is important to observe that the product of two matrices need not be defined; the product is defined if and only if the number of columns in the first matrix coincides with the number of rows in the second matrix. Frequently we shall write products such as AB without explicitly mentioning the sizes of the factors and in such cases it will be understood that the product is defined.
	be understood that the product is defined.
2) It follow from (1) that the equation (2) is equivalent with the equation (3).	
3) There is infinite number of prime.	
4) A subset of a linear independent set is a linear independent.	
, and a second s	
5) Let S be a set of vectors in a vector space V . The subspace span by S is defined to be the intersection W of all subspaces of V contain S .	3) If f is complex differentiable at every point z_0 in U , we say that f is holomorphic on U . We say that f is holomorphic at the point z_0 if it is holomorphic on some neighborhood of z_0 . We say that f is holomorphic on some non-open set A if it is holomorphic in an open set containing A .
	The relationship between real differentiability and complex differentiability is the fol- lowing. If a complex function $f(x+iy) = u(x,y)+iv(x,y)$ is holomorphic, then u and v have first partial derivatives with respect to x and y , and satisfy the Cauchy–Riemann
6) Substituting (1) into (2), it is seen that the formula (3) holds.	equations.
3. ($4\times10=40$ marks) Translate into Vietnamese (Dịch sang tiếng Việt).	
1) In mathematics, a group is an algebraic structure consisting of a set together with an operation that combines any two of its elements to form a third element. To qualify as a group, the set and the operation must satisfy a few conditions called group axioms, namely closure, associativity, identity and invertibility. While these are familiar from	
many mathematical structures, such as number systems - for example, the integers	
endowed with the addition operation form a group - the formulation of the axioms is	
detached from the concrete nature of the group and its operation.	
	4) In a plane (α) , every straight line a divides the remaining points of this plane into two regions having the properties: Every point A of the one region determines with each point B of the other region a segment AB containing a point of the straight line a . On the other hand, any two point A, A' of the same region determine a segment AA' containing no point of a .