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Note
Analytic Geometry and Analytical Geometry are the same
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Unit 1. Sets and Functions

1. Reading

The concept of set and operations on sets

The concept of set plays an extraordinarily important role in modern
mathematics because, in modern formal treatments, most mathematical
objects (numbers, relations, functions, etc.) are defined in terms of sets.
There are several theories of sets used in the discussion of the foundations
of mathematics. Here we shall briefly discuss very basic set-theoretic con-
cepts in the naive point of view. Unlike axiomatic set theories, which are
defined using a formal logic, naive set theory is defined informally, in nat-
ural language.

Basic notations

In naive set theory, a set is described as a well-defined collection of ob-
jects. These objects are called the elements or members of the set. Objects
can be anything: numbers, people, other sets, etc.

We shall denote sets by capital letters A, B, ... and their elements by low-
ercase letters a, b,.... The statement "the element a belongs to the set A"
will be written symbolically as a € A; the expression a ¢ A means that the
element a does not belong to the set A. If all the elements of which the set
A consists are also contained in the set B then A will be called a subset of B
and we shall write A c B. We say that A is equal to B and write A=Bif AcB
and B c A, otherwise, we write A # B. The set A is said to be a proper subset
of the set B, written AC B, if AcBand A #B.

Sometimes, in speaking about an arbitrary set (for example, about the
set of roots of a given equation) we do not know in advance whether or
not this set contains even one element. For this reason it is convenient to
introduce the concept of the so-called empty set, that is, the set which does
not contain any elements. We shall denote this set by the symbol ¢. Every
set contains @ as a subset.

How does one go about specifying a set? If the set has only a few ele-
ments, one can simply list the elements in the set, writing "A is the set con-
sisting of elements a, b, ¢". In symbols, this statement becomes A ={a, b, c},
where the curly brackets are used to enclose the list of elements.

The usual way to specify a set, however, is to take some set A of ob-
jects and some property that elements of A may or may not possess, and
to form the set consisting of all elements of A having that property. For
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instance, one might take the set of real numbers and form the subset B
consisting of all even integers. In symbols, this statement becomes B = {x |
x is an even integer}. Here the braces stand for the words "the set of", and
the vertical bar stands for the words "such that". The equation is read "B is
the set of all x such that x is an even integer".

Union, intersection and difference

If A and B are arbitrary sets, then their union, written Au B, is the set
consisting of all elements which belong to at least one of the sets A and
B. The intersection of two sets A and B, denoted by An B, is the set which
consists of all the elements belonging to both A and B. The difference of
the sets A and B, written A\B, is the set of those elements in A which are not
contained in B. In general it is not assumed here that Bc A. f Bc A, A\B is
also called the complement of B in A. In symbols, we write

AuB={x|xeAvx€eB}
AnB={x|xeAAnx€eB]},
A\B={x|xeAAx¢gB}.

The logical signs "A" and "v" are read "and" and "or" respectively.

In certain settings all sets under discussion are considered to be subsets
of a given universal set U. In such cases, U\A is called the absolute com-
plement or simply complement of A, and is denoted by A° or A. In symbols,
AC={x|x¢gA}.

The following are useful properties of the operators mentioned above:

(AUB)NC=(ANC)U(BNO), BNnC=BuUC,
(ANB)uC=(AuC)Nn(BUCQC), BuC=BnC,
A=A, A\B=AnB.

Cartesian product

Given sets A and B, we define their Cartesian product A x B to be the set
of all ordered pairs (a, b) for which a is an element of A and b is an element
of B. Formally,

AxB={(a,b)|acA,beB}.

We can extend this definition to a set A x B x C of ordered triples, and
more generally to sets of ordered n-tuples for any positive integer n. It is
even possible to define infinite Cartesian products, but to do this we need
a more recondite definition of the product.
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Functions
The concept of function

The concept of function is one you have seen many times already, so it is
hardly necessary to remind you how central it is to all mathematics. In this
subsection, we give the precise mathematical definition, and we explore
some of the associated concepts.

A function is usually thought of as a rule that assigns to each element
of a set A, an element of a set B. In calculus, a function is often given by
a simple formula such as f(x) = 3x* +2 or perhaps by a more complicated
formula such as

f =Y x*
k=1

One often does not even mention the sets A and B explicitly, agreeing to
take A to be the set of all real numbers for which the rule makes sense and
B to be the set of all real numbers. As one goes further in mathematics,
however, one needs to be more precise about what a function is. Math-
ematicians think of functions in the way we just described, but the defi-
nition they use is more exact. This definition relies on the notion of the
cartesian product.

A function (or mapping) f from X to Y is a subset G of the cartesian
product X x Y subject to the following condition: every element of X is the
first component of one and only one ordered pair in the subset. In other
words, for every x in X there is exactly one element y such that the ordered
pair (x, y) belongs to G. This formal definition is a precise rendition of the
idea that to each x is associated an element y of Y, namely the uniquely
specified element y with the property just mentioned.

A function f from X to Y is commonly denoted by f:X — Y. The sets X is
called domain of f, while Y is called codomain of f. The elements of X are
called arguments of f. For each argument x, the corresponding unique y
in the codomain is called the value of f at x or the image of x under f. Itis
written as f(x). One says that f associates y with x or maps x to y. This is
abbreviated by y = f(x).

If A is any subset of the domain X, then the set f(A) ={f(x) | x € A} is called
the image of A under f. Especially, f(X) is called the range or the image of
f.On the other hand, if B is subset of Y, the set f~1(B) = {x | f(x) € B} is called
the inverse image or preimage of B under f.
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Injective and surjective functions

A function f:X — Y is called injective (or one-to-one, or an injection) if
f(a) # f(b) for any two different elements a and b of X. It is called surjective
(or f is said to map X ontoY) if f(X) =Y. That is, it is surjective if for every
element y in the codomain there is an x in X such that f(x) = y. Finally, f is
called bijective if it is both injective and surjective.

If f is bijective, there exists a function from Y to X called the inverse of
f. It is denoted by f~!, read " f inverse", and defined by letting f~!(y) be
that unique element x of X for which f(x) = y. Given y €Y, the fact that f is
surjective implies that there exists such an element x € X; the fact that f is
injective implies that there is only one such element x. It is easy to see that
f~1is also bijective.

Restrictions and extensions

Given function f :X — Y. If A is any subset of X, the restriction of f to
A is the function f|s from A to Y such that f|s(a) = f(a) for all a in A. The
notation f|, is read " f restricted to A". If g is a restriction of f, then it is
said that f is an extension of g.

Function composition

Given functions f:X — Y and g:Y — Z. The composite (or composition)
of f and g is the function go f : X — Z defined by (go f)(x) = g(f(x)), Vx e X.

Note that go f is defined only when the codomain of f equals the domain
of g.

Exercise 1.1. Fill in each blank with a suitable mathematical term. Some
terms are given in the box below.

bijection / graph / periodic / superset / surjection / one-to-one

Example. AsetAis ................ of aset Bif A is a subset of B, but B is
not a subset of A.
~> A set A is a proper subset of a set B if A is a subset of B, but B is not a
subset of A.
a) The .......... of {1,2,3,4} and {1, 3,5} is the set {1, 3}.
b) The .......... of {a, b} in {a, b, ¢} is the set {c}.
c) Theemptysetisa .......... of every set.
d) IfAisasubsetofB,thenBiscalleda .......... of A.

e) Amapping f:X—-Yis .......... if, for any y € Y, f~1(y) contains not
more than one element.
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f) Afunction fis .......... if and only if f~1(y) is not empty for any y in
its codomain.

g) Afunction f:X—Yisa .......... if and only if for any y € Y there is a
unique element x € X such that f(x) = y.

h) The .......... of a function f is the set of all possible values of f(x) as
x varies throughout the domain.

i) If f is a function with domain A, thenits .......... is the set of ordered
pairs {(x, f(x)) | x € A}.

j) The sine and cosine functionsare .......... with the same period 2.

2. Speaking and writing

Exercise 1.2. Read aloud the following notations/expressions/statements.
Refer to appendices A-1, A-2 and A-3. Leaners are encouraged to write
down the words they read.

Example. A={xeR|x<3}.Itisread as "A is the set of all real numbers that
are less than or equal to 3".

Example. f~Y(AnB) = f~1(A) n f~1(B). It is read as "The inverse image of
the intersection of A and B (under f) equals the intersection of the inverse
images of A and B" or " f inverse of A intersection B is equal to f inverse of
A intersection f inverse of B".

a) A=12,4,6,8}. g fYAUB)=f AU fIB).
b) A={neN|10<n<100}. h) f~1(A\B) = f 1A\ f 1 (B).
c) AcB=>AUB=B. i) fF(AUB)=f(A) U f(B).

n n ___ 1 — X
d) N A= U A ) fn=2"Inx.

k=1 k=1 k) f(x): \/Zf.smx.
e) xeAUB & (xe AV x€B). x +Vx
f) xeA\B o (xe AAx¢B). D) P(x)= ¥ apxk.

k=0
Exercise 1.3. Translate the following sentences into Vietnamese.
Example. Ta no6i hai tap hgp A va B tuong duong (equivalent) v6i nhau
hay c6 cung luc luogng (cardinality) néu c6 mot song anh tu A vao B.
~~ We say that two sets A and B are equivalent (or have the same cardi-
nality) if there exists a bijection f from A into B.

a) Néu Ala tap con ctia B va B1a tip con ctia C thi A la tap con clia C. ~~
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b) Ki hiéu 22(X) 1a tap hop tat ca cac tap con ciia tap hop X. Néu X c6 n
phan t thi 22(X) €6 27 phan tl. ~ ......oiiiii it
c) Ta ndi hai tip hgp A va B roi nhau (disjoint) néu chiing khong c6 phﬁn
T CUNE. ~~ oottt ettt
d) Dé chitng minh tap hop Ala tap con clia tap hop B ta chiing td6 m6i phan
tGchaAdeulaphan ticlaB. ~ ..ottt

e) Néu f:X — Yva g:Y — Zlanhiing don anh thi anh xa hop thanh h=go f
cunglamotdonanh. ~ ... ..

f) Ta noi tap hop A la htu han (ﬁmte) néu A tuong duong véi tap hop
{1,2,...,n} v6i s6 nguyén duong n nao dé. Néu tap hop A khong hitu han thi
dUQc goilavo han (infinite). ~ ...

g) Tanéi tap hgp A 1a dém dudc (countable) néu né tuong duong véi tap
RGP CAC SO NGUYEN Z. ~> ottt ettt e e

h) Tap hdp A la v6 han khi va chi khi A tuong duong v6i mot tap con thuc
SUNAO0 A0 CUANO. v ottt ettt ettt

Exercise 1.4. Prove the following assertions. Write down proofs and talk
things out with your classmates or friends.

Example. A\(A\B) =AnNB.

Proof. In order to show the two sets are equal, we will show that an ele-
ment belongs to one if and only if it belongs to the other. We have

x€A\(A\B) © (x€ A) A [x € (A\B)]
S (xeA)AN[(xZ€A)V(xeB)]
S [(xeAAN(xZA)]VI(xXeA)A(xeB)]
< (x€A)AN(x€B)
< xeAnB.
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Thus, A\(A\B) = AnB. The equality can be also proved as follows:

A\(A\B) = A\(AnB) =AnANB=ANAUB)
=AN(AUB)=(ANAUANB) =N (ANB)=ANB. O
Example. If functions f:X — Y and g :Y — Z are surjective, then the com-
posite go f is also surjective.

Proof. Suppose both f and g are surjective. For any z in Z, since g is sur-
jective, there exists an y € Y such that g(y) = z. Also, since f is surjective,
there exists x € X such that y = f(x). Thus, z = go f(x), and therefore go f is

surjective. O
a) AUANnB) =A. c) Ax(BUC)=(AxB)uU(AxC).
b) A\(BNC) = (A\B) U (A\C). d) Ax(B\C)=(AxB)\(AxC).

e) If functions f:X —Yand g:Y — Z are injective, then the composite go f
is also injective.

f) The function f:R — R defined by f(x) = 2x+ 1 is bijective.

g) Let f:X — Y be a function, AcY. Then f(f !(A)) c A and equality holds
if f is surjective.

h) Let f:X — Y be a function, A,BcX. Then f(AnB) < f(A)n f(B) and equal-
ity holds if f is injective.

Unit 2. Real Numbers. Limit and Continuity
1. Reading

Construction of the real numbers

There are many ways to construct the real number system, for exam-
ple, starting from natural numbers, then defining rational numbers alge-
braically, and finally defining real numbers as equivalence classes of their
Cauchy sequences or as Dedekind cuts, which are certain subsets of ratio-
nal numbers. Another way is simply to assume a set of axioms for the real
numbers and work from these axioms. In the present subsection, we shall
sketch this approach to the real numbers.

Firstly, let us introduce some needed notations.
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Totally ordered set. Least upper and greatest lower bounds

A relation on a set X is a subset R of the cartesian product X x X.

If R is arelation on X, we use the notation xRy to mean the same thing as
(x,y) € R. We read it "x is in the relation R to y."

Recall that a function f: X — X is also a subset of X x X. But it is a subset
of a very special kind: namely, one such that each element of X appears as
the first coordinate of an element of f exactly once. So any function f from
X into itself is also a relation on X. The inverse is not always true.

A relation R on a set X is called an total order relation (or linear order,
or simple order) if it has the following properties:

(1) Forall xinR, x < x; (reflexivity)
(2) Forall xand yinR, ifx<yand y<x, then x=y; (antisymmetry)
(3) Forall x, yand zinR, if x< y and y < z, then x < z; (transitivity)
(4) Forall x and yin R, either x< y or y < x. (totality)

If < is a total order relation on the set X, then the couple (X, <) is called a
totally ordered set.

Let (X, <) be a totally ordered set. Let A be subset of X. We say that the
element a is the largest element of A if a € A and if x < a for every x € A.
Similarly, we say that a is the smallest element of A if a € A and a < x for
every x € A. It is easy to see that a set has at most one largest element and
at most one smallest element.

We say that the subset A of X is bounded above if there is an element b of
X such that x < b for every x € A; the element b is called an upper bound for
A. If the set of all upper bounds for A has a smallest element, that element
is called the least upper bound, or the supremum, of A. It is denoted by
supA; it may or may not belong to A. If it does, it is the largest element of A.

Similarly, A is bounded below if there is an element b of X such that b< x
for every x € A; the element b is called lower bound for A. If the set of all
lower bounds for A has a largest element, that element is called the greatest
lower bound,or the infimum, of A. It is denoted by infA; it may or may not
belong to A. If it does, it is the smallest element of A.
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Binary operation

A binary operation on a set X is a function f mapping X x X into X.

When dealing with a binary operation f on a set X, we usually use a no-
tation different from the standard functional notation. Instead of denoting
the value of the function f at the point (x, y) by f(x, y), we usually write the
symbol for the function between the two coordinates of the point in ques-
tion, writing the value of the function at (x, y) as xfy. Furthermore (just as
was the case with relations), it is more common to use some symbol other
than a letter to denote an operation. Symbols often used are the plus sym-
bol +, the multiplication symbols - and o, and the asterisk *; however, there
are many others.

Axioms of real numbers

A model for the real number system consists a set R, two binary opera-
tions + and - on R (called addition and multiplication, respectively), and
a total order relation < on R satisfying the following properties:

1) (R, +,-) forms a field. In other words,

e Forallx, yand zinR, (x+y)+z=x+(y+2z)and (x-y)-z=x-(y-2);
(associativity of addition and multiplication)
e Forallxand yinR, x+y=y+xand x-y=y-x;
(commutativity of addition and multiplication)
e Forall x, yand zinR, x- (y+2) = (x-y) + (x- 2);
(distributivity of multiplication over addition)
o There exists an element of R, called zero and denoted by 0, such
that x+0 = x, for all x in R; (existence of additive identity)
» There exists an element of R which is different from 0, called one
and denoted by 1, such that x-1 = x, for all x in R;
(existence of multiplicative identity)
» For every x in R, there exists an element —x in R, called the neg-
ative (or opposite) of x, such that x + (—-x) = 0;
o For every x # 0 in R, there exists an element x™! in R, called the
reciprocal of x, such that x-x™1 =1.
2) The field operations + and - are compatible with the order <. In other
words,
e Forallx, yand zinR,if x<y,thenx+y<y+z;
(preservation of order under addition)
e Forallx, yand zinR,if x<x yand 0<z,thenx-z<y-z.
(preservation of order under multiplication)
3) The order < is complete in the following sense: every non-empty sub-

12 E4AM.NTA.MATH.HNUE



set of R bounded above has a least upper bound.

It can be proved that any two models for the real number system must
be isomorphic, i.e., there is a bijection between the two sets of the mod-
els preserving both the field operations and the order. For this reason, any
model for the real number system defines "the" real number system, in
other words, the real number system is defined uniquely up to an isomor-
phism.

Some notations

Let (R, +,-,<) be the real number system. Then each element x of R is
called a real number. We say a real number x to be positive if x >0, and to
be negative of x < 0. Here we write a < b if a < b and a # b. It can be proved
that the number 1 is positive. Let us denote by R.. the set of all positive real
numbers.

Natural numbers, integers and rational numbers

A subset A of the real numbers is said to be inductive if it contains the
number 1, and if for every x in A, the number x +1 is also in A. Let «f be the
collection of all inductive subsets of R. Then the set Z,. of positive integers
is defined by the equation

Z.= ) A

Aeo
The sets N of natural numbers, 7 of integers, and Q of rational numbers

are respectively defined by
N = {0} U Z+,
Z={x|x=00rxeZ,.or —xeZ,},
Q=f{x-y 'lx,yezy#0}.

Exercise 2.1. Fill in each blank with a suitable mathematical term from the
box.

bounded / continuous / convergent / decreasing / defined / dense /
increasing / integer / irrational / maximum / minimum / monotone
/ monotonically / positive / sequence / series / strictly / uniformly

a) Areal number that is not rationaliscalled ...........

b) The set of rational numbersis .......... in R, that is, for any a and b
in R, a < b, there exists a rational number ¢ such that a< c < b.

¢) Each function u :N — R from the set of natural numbers into the set of
real numbersiscalleda .......... of real numbers.
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d) Any bounded sequence of real numbers hasa ................
subsequence.
e) If the sequence (u,) is a monotonically .......... andis ..........
from below, then (u,) is convergent.
f) If a sequence is either increasing or decreasingitiscalleda ..........
sequence.
g) If thereal-valued function fis .......... on a closed interval [a, b] and
A is some number between f(a) and f(b), then there is some number ¢ in
[a, b] such that f(c) = A.
h) If the real-valued function f is continuous on the closed interval [a, b],
then fis.......... continuous on this interval.
i) If f(x) < f(y) forall x,yin [a,b], x < y, then we say that fis ..........
increasing on [a, b].
j) Principle of mathematical induction. If foreach .......... integer n
there is a corresponding statement P, then all the statements P, are true,
provided the following two conditions are satisfied:

(1) P, istrue.

(2) Whenever k is a positive .......... such that P;. is true, then Py, is

also true.

2. Speaking and writing
Exercise 2.2. State the definition for each of the following concepts. Use
given hints.

Example. Continuity of a function at a point. ~» A function f:D — R is
said to be continuous at a point xy € D if xlin% f(x) = f(xp), in other words,
—AX0

for every € > 0 there exists a § > 0 such that for all x € D, if [x—¢| < & then
lf(x) = f(x0)| <e.

Example. Boundedness of a function. ~ We say that a function f:D — R
is bounded if there exists a positive number M such that |f(x)| < M for all
xeD.

a) Convergence of a sequence. ~~ We say that a sequence (u,) ..........
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...........................................................................

...........................................................................

...........................................................................

...........................................................................

Exercise 2.3. Read aloud the following notations/expressions/statements.
Refer to appendices A-1 — A-4. Leaners are encouraged to write down the
words they read.

Example. YVe>030>0Vxel(0<|x—al<d=|f(x) - <e).

~ Itis read as "For any positive number ¢, there exists a positive number
d such that for every (real number) x in [, if the distance from x to a (or the
absolute value of x minus a) is greater than zero and is less than §, then the
distance from f of x to [ is less than e".

a) 0.0012=12x107%, j) @°8’=bO0<a#1,b>0).
n n
b) n=3.14. k) log, Il bx= X log, b (0<a#1,br>0).
k=1 k=1

1 3 7 n
C) —+—=-—. 1 + n_ n ..k }’l—k‘
)4 2 4 ) () kgo(’“)xy

1+ 2
d) cos?x= c;)s a m) |ab+cd|<Va?+c2Vb?+d?.
P pd 1 1
e) vac=]lal. n) ab<a—+—(a,b>0,p,q>1,—+—:l).
p 4 p q

f) linol Inx = —oo0. 0) Ve>03INeNn=N= |u, —al<e).

xX— +
g) xlir_n 2% =0. p) YM>0IN>0VxeR (x<-N= f(x)>M).

.oef-1 as<sM,YaeA
h) lim =1. Q) M=supAe

x—0 Ve>0dage A:M—€< ay.

<aVaeA
i) (@’ = a¥ (a>0). ) m=infAeld " S4VE
Ve>0dapeA:ap<m+e.

Exercise 2.4. Translate the following sentences/paragraphs into English.
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...........................................................................

c) Ham sb f lién tuc tai xo khi va chi khi v6i moi day s0 {x,} =D, néu x,, — xo
thl () = Flr0) 0 ettt e e et et e e e
d) Néuham sé f lién tuc trén doan [, b] thi f bi chan trén doan nay, nghia
13, ton tai s6 duong M sao cho |f(x)| <M v6i moi x€ [a,b]. ~ .............

e) Néu f 12 ham sb lién tuc va don diéu nghiém ngit trén doan [a, b] thi f
c6 ham so ngugc cting 1a, mot ham lién tuc va don diéu nghiém ngat. ~

f) Gia st (f,) 12 mot day ham lién tuc trén [a, b] va hoi tu déu dén ham f
trén doan nay thi f lién tuc trén [a,b]. ~>  ...veiiiiiiii it

g) Gia st f 1a ham sb lién tuc va don diéu nghiém ngit trén [a, b]. Néu
f(a).f(b) <0 thi phuong trinh f(x) =0 c6 nghiém duy nhat trén [a, b]. ~

...........................................................................

Exercise 2.5. Using the axioms of real numbers, prove the following prop-
erties for R. Write down the proofs and talk things out with your classmates
or friends.

Example. If x+ y = x, then y =0.
Proof. We have

X+y=x=>y+x=x (commutativity of addition)
S y+x+(—x)=x+(—x) ("+" is an operation)
=>y+0=0 (property of —x)
=y=0. (property of 0)
So the assertion is proved. O
a) Ifx+y=x,theny=0. b) 0-x=0.
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c) -0=0. g x-(x-y)=x-y-x-z.

d -(—x)=x. h) x<yrnzsw=>x+z<y+w.
e) x-(—y)=—-(x-y). ) x>0Ay>0=xy>0.
f) (-1)-x=-x. j) x>0 -x<0.

Exercise 2.6. For the following assignments, write down your solutions and
talk things out with your classmates or friends.

n
Example. Prove that Y. (2i — 1) = n? for every positive integer n.
i=1

1
Solution. The statement is true for n=1since ¥ 2i—1)=1=12.
i=1
Assume that the statement is true for some positive integer k, that is,
k

Y (2i—1) = k*. Then we have
i=1

k+1 k
Y Ri-1=) QRi-D+2(k+1)-1
i=1 i=1

=k*+2k+1 (by the induction hypothesis)
= (k+1)>.

This means the statement is true for k + 1. By principle of mathematical
induction, the statement is true for all positive integer n. O

a) Let A and B be nonempty bounded subsets of R. Explain why if A c B,
then sup A < supB and infA = infB.

b) LetA= % | neN}. Find supA and infA.

c) Prove by induction that for each positive integer n,

L 2n-1)(2n+1)
Y @i-12=" :
2i-1) 3

i=1

d) Prove by contradiction that the square root of 3 is irrational.
e) Prove that a convergent sequence has a unique limit.

f) Prove that if f is a real-valued function which is continuous on a closed
interval [a, b], then f is bounded on [a, b].
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Unit 3. Calculus

1. Reading

Calculus is a branch of mathematics foc@d on limits, functions, deriva-
tives, integrals, and infinite series. While geometry is the study of shape
and algebra is the study of operations and their application to solving equa-
tions, calculus is the study of change. It has widespread applications in sci-
ence, economics, and engineering and can solve many problems for which
algebra alone is insufficient.

Calculus has two major branches, differential calculus and integral cal-
culus, which are related by the fundamental theorem of calculus.

Differential calculus

Differential calculus is the study of the definition, properties, and appli-
cations of the derivative of a function.
The concept of derivative

Let f be a given real-valued function of a single real variable. It is often
written as y = f(x). Usually we call x the independent variable and y the
dependent variable. Sometimes, x is called the input, while y is called the
output.

Geometrically, the derivative of f at a point equals the slope of the tan-
gent line to the graph of the function at that point. It determines the best
linear approximation to the function at that point.

If the function f is linear (that is, if the graph of the function is a straight
line), then the function can be written as y = mx+b, bis the y-intercept, and

rise  changeiny Ay
run  changeinx Ax’

m =

This gives an exact value for the slope of a straight line. If the graph of the
function f is not a straight line, however, then the change in y divided by
the change in x varies. Derivatives give an exact meaning to the notion
of change in output with respect to change in input. To be concrete, fix a
point a in the domain of f. (a, f(a)) is a point on the graph of the function.
If h is a number close to zero, then a + h is a number close to a. There-
fore (a+ h, f(a+ h)) is close to (a, f(a)) (in case f is continuous). The slope
between these two points is

- f(a+h})l—f(a).
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This expression is called a difference quotient. A line through two points
on a curve is called a secant line, so m is the slope of the secant line be-
tween (a, f(a)) and (a+h, f(a+ h)). The secant line is only an approximation
to the behavior of the function at the point a because it does not account
for what happens between a and a+ k. It is not possible to discover the be-
havior at a by setting h to zero because this would require dividing by zero,
which is impossible. The derivative of f at the point a is defined by taking
the limit as & tends to zero:

v flath)—fla)
fl = fim S

By finding the derivative of f at every point in its domain, it is possible to
produce a new function, denoted by f’ and called the derivative function
or just the derivative of the function f.

If the derivative of f exists at a point x, then f is said to be differentiable
at x. The process of finding the derivative of f is called differentiation.

Some definitions and theorems

Let f be a (real-valued) function with the domain D c R. We say the func-
tion f attains an absolute (or global) maximum at c in D if f(c) = f(x) for
all x in D. The number f(c) is called the (absolute) maximum value of f
on D. Similarly, f attains an absolute minimum at c in D if f(c) < f(x) for
all x in D and the number is called the (absolute) minimum value of f on
D. The maximum and minimum values of are called the extreme values of
f.

A point x of D is called a local (or relative) maximum point of f if there
is some § > 0 such that

f(x) < f(xp) for all xe DN (xp— 8, xp + d).

The number f(xo) itself is called a local (or relative) maximum of f.
Local minimum points and local minima are defined similarly. A local
minimum or local maximum of f is called a local extremum of f.
Theorem (Fermat’s theorem). If a function f defined on (a,b) and has a
local maximum (or minimum) at x € (a,b), and f is differentiable at x,
then f'(x) = 0.
Theorem (Rolle’s theorem). Ifa function f is continuous on [a, bl and dif-
ferentiable in (a,b), and f(a) = f(b), then there exists a number x in (a,b)
such that f'(x) = 0.
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Theorem (The mean value theorem). Iff isa continuous function ona, b]
which is differentiable in (a, b), then there is a point c in (a, b) such that

fb)=f(a)= f'(c)(b-a).

Theorem. Suppose a function f is differentiable in (a, b).
(i) Iff'(x) =0 forallx € (a,b), then f is monotonically increasing on (a, b).
(ii) If f'(x) =0 forall x € (a,b), then f is a constant function.
(iii) If f'(x) <0 forallx € (a, b), then f is monotonically decreasing on (a, b).
Integral calculus

Integral calculus is the study of the definitions, properties, and applica-
tions of two related concepts, the indefinite integral and the definite inte-
gral.

The indefinite integral is the antiderivative, the inverse operation to the
derivative. F is an indefinite integral of f when f is a derivative of F. (This
use of lower- and upper-case letters for a function and its indefinite inte-
gral is common in calculus.)

The definite integral, also called Riemann integral, inputs a function
and outputs a number. Given a function f of a real variable x and an inter-
val [a, b] of the real line, the definite integral [ f f(x)dxis defined informally
to be the area of the region in the xy-plane bounded by the graph of f, the
x-axis, and the vertical lines x = a and x = b, such that area above the x-
axis adds to the total, and that below the x-axis subtracts from the total.
Formally, the definite integral is defined as the limit of a Riemann sum of
the function with respect to a tagged partition of the interval.

A tagged partition is a finite sequence

a=Xxg<h<x1Sbh<xp<--<xy_1<t, <x,=>b.

This partitions the interval [q, b] into n sub-intervals [x;_, x;] indexed by
i, each of which is "tagged" with a distinguished point t; € [x;_1, x;]. Let
A; = x; — xj—1 be the width of sub-interval i. The mesh of such a tagged
partition is the width of the largest sub-interval formed by the partition,
max A;. A Riemann sum of the function f with respect to such a tagged

1<i<n

partition is defined as
n
Y fuh;
i=1

thus each term of the sum is the area of a rectangle with height equal to
the function value at the distinguished point of the given sub-interval, and
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width the same as the sub-interval width. The Riemann integral of a func-
tion f over the interval [q, b] is equal to a number I if: For all € > 0 there
exists 6 > 0 such that, for any tagged partition [a, b] with mesh less than §,
we have .
I-) f)Al <.

i=1
In this case, f is said to be integrable on the interval [a, b].
Some theorems
Theorem. If f is an integrable real-valued function on the closed interval
la, b], then f is bounded on |a, b].
Theorem. If a function f is continuous on [a,b], then f is integrable on
(a,b].
Theorem. Let f be an integrable function on [a, b] satisfying

m< f(x) <M forall x in [a, b].

Then )
m(b—a)sf fx)dx<M(b-a).
a

Theorem (The mean value theorem for integration). Suppose f is a con-
tinuous function on [a, b]. Then there exists a number c in [a, b] such that

b
f fx)dx= f(c)(b—a).
a

Fundamental theorem of calculus

The fundamental theorem of calculus is a theorem that links the concept
of the derivative of a function with the concept of the integral.

The first part of the theorem, sometimes called the first fundamental
theorem of calculus, shows that an indefinite integration can be reversed
by a differentiation. This part of the theorem is also important because it
guarantees the existence of antiderivatives for continuous functions. Specif-
ically, it is stated as follows.

Theorem. Let f be a continuous real-valued function defined on a closed
interval [a, b]. Let F be the function defined by

X
F(x) :f fdt,vxela,bl.
a
ThenF is differentiable on [a, b], and F'(x) = f(x),Vx € [a, b].
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The second part, sometimes called the second fundamental theorem of
calculus, allows one to compute the definite integral of a function by us-
ing any one of its infinitely many antiderivatives. This part of the theorem
has invaluable practical applications, because it markedly simplifies the
computation of definite integrals. Specifically, it says as follows:

Theorem. Let f andF be real-valued functions defined on a closed interval
[a, b] such that F'(x) = f(x) for all x € [a,b]. If f is Riemann integrable on
la, b], then

b
f f(x)dx =F(b)—F(a).

Exercise 3.1. Fill in each blank with a suitable mathematical term. Some
terms are given in the box below.

antiderivative / area / asymptotes / critical point / cubic /
decreasing / domain / first / improper / increasing / inflection /
primitive integral / second / tangent line

a) A polynomial of degree 3 P(x) = ax®+bx?>+cx+d (a#0) iscalleda .....
..... function.

b) Let f be a function defined on D. A pointcinDiscalleda ............
. of fif f'(c) =0 or f'(c) does not exist.

c) Ifa function f is differentiable on (a, b) and its derivative is nonnegative

in (a,b), then fis .......... on this interval.
d) The function F(x) =sinxisan .......... of the function f(x) = cosx.
e) The equation ofthe .......... of the graph of a differentiable function

f atapoint (a, f(a)) is given by y = f'(a)(x — a) + f(a).

f) Let f and g be continuous functions on a closed interval [a, b]. The ..
........ of the region bounded by the curves y = f(x), y = g(x), and lines
x=a, x=bis computed by S = ff |f(x)—g(x)|dx.

g) Let f be nonnegative continuous function on [a,b]. The .......... of
the solid obtained by rotating about the x-axis the region under the curve
y=f(x) fromatobisV= nfffz(x)dx.

h) The.......... integral of a function f on the interval [0, +o0) is defined
by f0+oof(x)dx = Al_])l}lQQf?f(X)dX

i) Steps to sketch the graph of a function f(x):
e Findthe .......... of f.
e Findthe .......... derivative f'(x).
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e Find .......... points of f(x) - whenever f’(x) = 0 or undefined.

e Findthe .......... derivative " (x).
e Find .......... points of f(x) - whenever f"(x) =0
 Find (vertical, horizontal, oblique) .......... (if any).

« Draw the sign table for f’(x) and f”(x) which contains all critical and
inflection points (and vertical asymptotes, if there are any).

« State the intervals on which f(x) is increasing, .......... , concave
up and concave down.

« Computing values of f at critical and inflection points.

« Plot the critical and inflection points of the graph, and x and y inter-
cepts.

 Sketch the graph.

2. Speaking and writing

Exercise 3.2. Read aloud the following notations/expressions/statements.
Refer to appendices A-2 and A-4. Leaners are encouraged to write down
the words they read.

a) (x%) =ax*1,x>0. g) (arcsinx) = \/1_,
' ) ) (). g0
b) (log,x) - h) (f.e)"x) = ( )F @ x).g" P ().
c) e = 5 % i) f uv’dx:uv|a—ffu vdx.
n=0 """
d) S=[P1f)-gwldx. ) =In(x+ vV*2+ a?) +C.
e) V=n [’ f2(x)dx. K ( [ f(x)g(x)dx) < f F2(x)dx f g2(x)dx.
qu 62 +°°smx _m

Exercise 3.3. Translate the followmg sentences/paragraphs into Vietnamese.
a) Néu ham s6 f kha vi tai diém x, thiné lién tuc tai diém d6. ~ ........
b) Ham sb f(x) = |x| khong kha vi tai diém x = 0 nhung dat gia tri nh6 nhat
tal AICIMN NAY. ~> oottt e e e

c) Tan6i mot ham so don diéu trén mot khoang nao d6 néu né tang hoic
giam trén khoang do. ~ ... ...t
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d) Néuham sb f lién tuc trén doan [a, b] thi f dat gid tri I6n nhét va gia tri
Nho NhAt trén dOAN NAY. ~> .. \vvttt ettt e,
e) Gia st f 1a ham sb lién tuc trén doan [a, b], kha vi trén khoang (a, b). Dé
tim gia tri 16n nhat va gia tri nhé nhat clia f trén [a, b):

1. Tim cac diém t6i han va gid tri clia f tai cac diém nay.

2. Tim gid tri cta f tai a va b.

3. Céc gid tri 16n nhat va nho6 nhét trong cac gia tri 6 ca hai buéc trén

tuong ing 1a gi4 tri 16n nhat va gia tri nhé nhat cta f trén [(a, b].

« X oA X 2 A S - A < 2 . o A
g) Dieu kién can dé mét ham kha tich trén doan [a, b] 1a n6 bi chan trén
QOAN NMAY. ~ ettt ettt e e e e

h) Viét phuong trinh tiép tuyén ctia d6 thi ham sb y = x? + 2 biét né di qua
QTN A(],3). A ettt et et e e

i) Chiing minh ré'lng do thi hai ham s6 y=fx)vay=gk) cat nhau tai hai
diem phan biét. ~ ... .

j) Tinh dién tich hinh phang giéi han béi parabol y = x, tiép tuyén clia
parabol nay tai diém M(1,1) va truchoanh. ~ ......... ... . ...

k) Hay tinh thé tich ctia vat thé tron xoay do quay quanh truc tung hinh
phang giGihan bGicacdudng y=x?vay=1.~ .....ccciiiiiirnennenn...

Exercise 3.4. For the following assignments, write down your solutions and
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then discuss with your classmates.
Example. Prove the first fundamental theorem of calculus.
Proof. Let f be a continuous function on [a, b] and

X
F(x) :f fdt, x€la,b].
a

Fix arbitrary x in [a, b]. For any nonzero number & such that x+ h € [a, b] we
have

X x+h x+h
F(x + h)—F(x):f f(t)dr—f f(t)dt:f f(ndt. 3.1)
a a

X

According to the mean value theorem for integration, there exists a num-
ber ¢ between x and x + h such that

x+h
fx fdt= f(c)h.
Substituting this equality into (3.1) we obtain
F(x+ h)—-F(x) = f(c)h.
Dividing both sides by & gives

F(x+ h)-F(x)

N = f(o. (3.2)

Since ¢ — x as h — 0 and f is continuous at x, we have
lim f(c) = f(x).
lim flo=fx)

Thus, we can take the limit as & — 0 the both sides of the equality (3.2) to
receive

F(x) = f(x),
which completes the proof. N

a) Prove the mean value theorem for integration.
b) Prove the second fundamental theorem of calculus.

c) Sketch the graph of the function f(x) = x® —3x. Determine the equation
of the tangent line to the graph at x = 2.

2x—1

x+1°

d) Sketch the graph of the function f(x) =

E4AM.NTA.MATH.HNUE 25



Unit 4. Elementary Number Theory
1. Reading

Elementary number theory is a branch of number theory that investi-
gates properties of the integers by elementary methods. These methods
include the use of divisibility properties, various forms of the axiom of in-
duction and combinatorial arguments
Divisibility

Let a and b be integers, a # 0. If there exists an integer ¢ such that ac = b,
then we say that a divides b and write a|b. In this case, we also say that a is
a divisor of b, or a is a factor of b, or b is divisible by a, or b is a multiple
of a. If a does not divide b, we write a }b.

The basic properties of division are listed below.

Theorem. For integers a, b and c the following holds:

(1) Ifa#0, then ala and al0.

2) 1la.

(3) Ifalb and alc, then al(br + cs), for any integersr, s.

(4) Ifalb and bc, then alc.

(5) Ifa>0,b>0, alb and b|c, then a = b.

(6) Ifa>0,b>0, and alb then a<b.

Prime number

A prime number (or a prime) is an integer greater than 1 that has no
positive divisors other than 1 and itself. An integer greater than 1 that is
not a prime number is called a composite number.

The crucial importance of prime numbers to number theory and math-
ematics in general stems from the fundamental theorem of arithmetic,
which states as follows.

Theorem. Every integer n greater than 1 factors into a product of primes:

n:plpz...ps.

Further, writing the primes in increasing order p, < p, < --- < ps makes the
factorization unique.

Some of the primes in the product may be equal. For instance, 60 = 2-
2-3-5=2%.3.5, So the fundamental theorem is sometimes stated as: every
integer greater than 1 can be factored uniquely as a product of powers of
primes:

aq 02

A
n=py py P>
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where p; < py < --- < py are primes, ay,qs,...,0; are positive integers. This
equality is called the canonical decomposition of the integer n.

By means of the canonical decomposition of a positive integer one can
compute the values of the number-theoretic functions t(n), S(n) and ¢(n),
which denote, respectively, the number of divisors of n, the sum of the di-
visors of n and the amount of positive integers m < n that are coprime (or
relatively prime) with n (i.e., gcd(m, n) = 1):

Tn)=(g+ 1Dz +1)--- (o +1),

S(n) = -1 ptol pt o
p1+1 p2+1 pr+1

o222

An essential feature of these formulas is their dependence on the arith-
metical structure of n.

The prime numbers play the role of "construction blocks" from which
one can construct all other natural numbers. Therefore, questions on the
disposition of the prime numbers in the sequence of natural numbers evoked
the interest of scholars. The first proof that the set of prime numbers is
infinite is due to Euclid. Only in the middle of the 19th century did P. L.
Chebyshev take the following step in the study of the function n(x), the
number of prime numbers not exceeding n. He succeeded in proving by
elementary means inequalities that imply

X X
0.92120— < m(x) < 1.10555——
Inx Inx

for all sufficiently large x. Actually, n(x) ~ X asx— oo, but this was not

established until the end of the 19th century by means of complex anal-
ysis. For a long time it was considered impossible to obtain the result by
elementary means. However, in 1949, A. Selberg obtained an elementary
proof of this theorem.

Greatest common divisor and least common multiple

If a and b are integers and d is a positive integer such that d|a and d|b,
then d is called a common divisor of a and b. If both a and b are zero
then they have infinitely many common divisors. However, if one of them
is nonzero, the number of common divisors of a and b is finite. Hence,
there must be a largest common divisor which is called the greatest com-
mon divisor of a and b, and is denoted by gcd(a, b).
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By convention, it is accepted that gcd(0,0) = 0. The greatest common di-
visor of three or more integers may be defined similarly as for two integers.

The least common multiple of two integers a and b, usually denoted by
lcm(a, b), is the smallest positive integer that is divisible by both a and b. If
either a or b is 0, lcm(a, b) is defined to be zero. Similarly, ones can define
the least common multiple of three or more integers.

Congruence

For a positive integer n, two integers a and b are said to be congruent
modulo n, written as a = b (mod n), if their difference a — b is a multiple of
n. The number n is called the modulus of the congruence. The congru-
ence a = b (mod n) expresses that a and b have identical remainders when
divided by n.

Congruence modulo a fixed 7 is an equivalence relation. Indeed, for in-
tegers a, b and c, the following hold:

(1) a=a(modn); (reflectivity)
(2) If a= b (modn), then b = a (mod n); (symmetry)
(3) If a= b (modn) and b = ¢ (mod n), then a = ¢ (mod n). (transitivity)

Therefore, the relation congruence divides the set of all integers into non-
intersecting equivalence classes which are called residue classes modulo
n. Every integer is congruent modulo » with just one of the numberso, ..., n—
1; the numbers 0,...,n— 1 belong to different classes, so that there are ex-
actly n residue classes, while the numbers 0,..., n—1 form a set of represen-
tatives of these classes.

Congruence modulo a fixed n is compatible with both addition and mul-
tiplication on the integers. Specifically, it follows from

a=b (modn) and ¢ =d (mod n)

that
a+c=b+d (modn) and ac = bd (mod n).

The operations of addition, subtraction and multiplication of congru-
ences induce similar operations on the residue classes. Thus, if a and b are
arbitrary elements from the residue classes A and B, respectively, then a+ b
always belongs to one and the same residue class, called the sum A + B of
the classes A and B. The difference A - B and the product A-B of the two
residue classes A and B are defined in the same way. The residue classes
modulo n form an Abelian group of order n with respect to addition.
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An important application

For a long time, number theory in general, and the study of prime num-
bers in particular, was seen as the canonical example of pure mathemat-
ics, with no applications outside of the self-interest of studying the topic.
In particular, number theorists such as British mathematician G. H. Hardy
prided themselves on doing work that had absolutely no military signifi-
cance. However, this vision was shattered in the 1970s, when it was pub-
licly announced that prime numbers could be used as the basis for the
creation of public key cryptography algorithms.

Exercise 4.1. Fill in each blank with a suitable mathematical term from the
box.

congruent / incongruent / divisible / divisor / remainder / prime
/ composite / coprime / relative / relatively / infinite / infinitely

a) Aninteger nissaid to be evenifitis.......... by 2 and is odd otherwise.
b) Number 1 isneither .......... nor ...........

c) If the difference a — b is not divisible by n, then a and b are said to be ..
........ modulo n.

d) Two integers a and b are congruent modulo 7 if a and b leave the same

.......... when divided by n.

e) The set of all prime numbersis ...........

f) Two integers are called relatively prime,or .......... if their greatest
common divisor equals 1.

g) Ifac=bc (modm),andcand mare.......... prime, then a = b (mod m).

2. Speaking and writing

Exercise 4.2. Translate the following sentences/paragraphs into English.
a) Gia stt p 1a mot s6 nguyén t6, a va b 1a cac s6 nguyén. Néu p|ab thi pla
ROAC PlD. v e e

...........................................................................

d) Cho hai s6 nguyén a vab.bat s = {ra+sb |,seZvara+sb >0} S6
nguyén duong d 1a udc sé chung 16n nhéit clia hai s6 nguyén a va b khi va
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e) Hai so nguyén a va b 1a nguyén to cung nhau khi va chi khi ton tai cac
SONGUYEN r va sSA0 ChO ra+sh=1.~> .. .ottt iiinnenannn,

f) V6i cac s6 nguyén a, b va ¢, néu a va b1a nguyén té ciing nhau va alc, blc
TN ADIC. ~ e e e
g) Gia sii a va b 1a hai s6 nguyén, m 13 s6 nguyén duong. Néu a va m 1a
nguyén to cung nhau thi phuong trinh dong du tuyén tinh (linear congru-
ence equation) ax = b (mod m) c6 nghiém duy nhat. ~ ..................

Exercise 4.3. Solve the following problems. Write down solutions and talk
things out with your classmates or friends.

a) Show that, for any integers a, b and ¢, if a divides c and a+ b = c then a
divides b.

b) For every positive integer n, show that 2 divides n* — n and 6 divides
Vl3 —n.
c) Usinginduction, we show that 6 divides 7" -1, for any positive integer n.

d) Prove by induction that n® - n? + 2 is divisible by 3 for every positive
integer n.

e) Show that if a = b (mod m) and d|m, where d >0, then a = b (mod d).

f) Suppose that a = b (modm) and a = b (mod n). Prove that if gcd(m, n) =1,
then a = b (mod mn).

Unit 5. Algebra

Unit 6. Euclidean Geometry

1. Reading

Euclidean Geometry is the geometry of space described by the system of
axioms first stated systematically by Euclid in his textbook, the Elements.
Euclid’s method consists in assuming a small set of intuitively appealing
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axioms, and deducing many other propositions (theorems) from these.
However, Euclid’s axioms are incomplete, meaning that they are insuffi-
cient to produce the results one would like to be true in Euclidean geome-
try. Consequently, other axiomatic systems were devised in an attempt to
fill in the gaps. The first sufficiently precise axiomatization of Euclidean
geometry was given by D. Hilbert.

Hilbert’s system of axioms

The primary (undefined) notions of Hilbert’s system of axioms are points,
straight lines, planes, and relations between them consisting incidence
(expressed by the words "belongs to", "lie on", "contains" or "passes through",
etc), order (expressed by the word "between") and congruence" (expressed
by the word "congruent to" and denoted by the symbol "=").

Note that, in the following, a line segment, a ray, a angle, a triangle, and
a half-plane bounded by a straight line may be defined in terms of points
and straight lines, using the relations incidence and order.

Hilbert’s system contains 20 axioms, which are subdivided into five groups.

Group I: Axioms of incidence

I.1. For any two points there exists a straight line passing through them.

I.2. There exists only one straight line passing through any two distinct
points.

I.3. At least two points lie on any straight line. There exist at least three
points not lying on the same straight line.

I.4. There exists a plane passing through any three points not lying on
the same straight line. At least one point lies on any given plane.

I.5. There exists only one plane passing through any three points not
lying on the same straight line.

I.6. If two points A and B of a straight line « lie in a plane («), then all
points of a lie in («).

I.7. If two planes have one point in common, then they have at least one
more point in common.

1.8. There exist at least four points not lying in the same plane.
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Group II: Axioms of order

II.1.

I1.2.

I1.3.

I1.4.

If a point B lies between a point A and a point A, then A, B and C are
distinct points on the same straight line and B also lies between C
and A.

For any two points A and B on the straight line a there exists at least
one point C such that the point B lies between A and C.

Of any three points on a line there exists no more than one that lies
between the other two.

Let A, B,C be three points not lying in the same straight line and let
a be a straight line lying in the plane (ABC) and not passing through
any of the points A, B,C. Then, if the straight line a passes through
a point of the segment AB, it will also pass through either a point of
the segment BC or a point of the segment AC.

Group III: Axioms of congruence

IIL.1.

II1.2.
IIL.3.

II1.4.

IIL.5.

Given a segment AB and a ray OX, there exists a point C on OX such
that the segment AB is congruent to the segment OC, i.e. AB = OC.
IfAB=A'B’and AB=A"B", then A'B’'=A"B".

On a line a, let AB and BC be two segments which, except for B,
have no points in common. Furthermore, on the same or another
line @', let A’'B’ and B'C’ be two segments which, except for B/, have
no points in common. In that case if AB=A’B’ and BC = B'C’, then
AC=A'C.

Let there be given an angle ZAOB, a ray O’A’ and a half-plane n
bounded by the straight line O’A’. Then n contains one and only
one ray O'B’ such that ZAOB = ZA’O'B’. Moreover, every angle is
congruent to itself.

If, for two triangles ABC and A’B’'C’, one has AB = A'B/, AC = A'C/,
/BAC = /B'A’/C/, then ZABC = ZA'B'C.

Group IV: Axiom of parallels (Euclid’s axiom)

IV. Let there be given a straight line @ and a point A not on that straight
line. Then there is at most one line in the plane that contains a and
A that passes through A and does not intersect a.

32
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Group V: Axiom of continuity

V.1. (Archimedes’ axiom) Let AB and CD be two arbitrary segments. Then
the straight line AB contains a finite set of points A}, A,,..., A, such
that the point A; lies between A and A,, the point A, lies between
A; and As, etc., and such that the segments AA;, A 1Ay,...,A,_1A, are
congruent to the segment CD, and B lies between A and A,,.

V.2. (Cantor’s axiom) Let there be given, on any straight line (a), an infi-
nite sequence of segments A;AB;, A2By, ..., which satisfies two con-
ditions:

a) each segment in the sequence forms a part of the segment which
precedes it;

b) for each preassigned segment CD it is possible to find a natural
number n such that A,,B,, < CD.

Then (a) contains a point M belonging to all the segments of this
sequence.

All other axioms of Euclidean geometry are defined by the basic con-
cepts of Hilbert’s system of axioms, while all the statements regarding the
properties of geometrical figures and not included in Hilbert’s system must
be logically deducible from the axioms, or from statements which are de-
ducible from these axioms.

Hilbert’s system of axioms is complete; it is consistent if the arithmetic
of real numbers is consistent. If, in Hilbert’s system, the axiom about par-
allels is replaced by its negation, the new system of axioms thus obtained
is also consistent (the system of axioms of Lobachevskii geometry), which
means that the axiom about parallels is independent of the other axioms
in Hilbert’s system. It is also possible to demonstrate that some other ax-
ioms of this system are independent of the others.

Hilbert’s system of axioms is the first fairly rigorous foundation of Eu-
clidean geometry.

Some definitions and theorems
Right angle

Two angles ZAOB and ZCOB that have the common vertex O and the
common side OB, while the other sides of these angles OA and OC lie on a
straight line and intersect at the unique point O, are called supplementary
(or adjacent) angles. An angle which is congruent to its supplementary
angle is called a right angle. If a point O lies between two points A and B,
then the angle ZAOB is called a straight angle.

Two intersecting straight lines a and b are called perpendicular to each

E4AM.NTA.MATH.HNUE 33



other, written a L b, if all four angles formed by them at the intersection
point are right angles.

Lengths of segments and sizes of angles

Hilbert’s axioms do not explicitly mention measurement of distances or

angles; they are constructed from the axioms. Indeed, we have the follow-
ing theorems.
Theorem. Forany fixed given segment OE (O does not concide withE), there
exists a unique function that associates each segment AB with a nonnega-
tive real number, denoted by |AB| and called the length of the segment AB
measured relative to the gauge unit OE, satisfying the following properties:

(i) |OE|=1;

(ii) if AB=CD, then |AB| =|CD|;

(iii) if a pointB lies between two points A and C, then |AC| = |AB| + |BC|.
Theorem. Each angle ZAOB is associated with some real number that is
denoted by £ AOB and called the size or measurement of the angle /AOB so
that the following conditions are fulfilled:

(i) 0< LAOB <,

(ii) if ZAOB is a straight angle, then {AOB = n;
(iii) if ZAOB = ZCID, then £AOB = £CID;
(iv) ifaray OC lies inside an angle Z/AOB, then £AOB = £{AOC + £COB.

Exercise 6.1. Fill in each blank with a suitable mathematical term. Use the
pictures (Figure 0.1) as hints.

a) A .......... of a triangle is a segment connecting a vertex and the
midpoint (or center) of the opposite side.

b) The three altitudes of a triangle intersect in a single point, called the ..
........ of the triangle.

c) Ananglethatis ...................... to an internal angle of a triangle
is called an external angle of this triangle.

d) In aright-angular triangle the side opposite to the right angle is called
the ........... Other two sides are called ...........

e) The .......... cuts every median in the ratio 2: 1.

f) In a triangle ABC, the .......... is the intersection of the .........
. bisectors; it is the centerof .......... , the circle passing through the
three vertices.

g) The .......... of a triangle is the circle which lies inside the triangle
and touches all three its sides. Its radius is called the inradius.

34 E4AM.NTA.MATH.HNUE



v vertex
the orthocenter

mid t
- segmen hypotenuse
the centr0|d /’I
o

altitude

A
v
£~ I5g ) |
. . , . . L2 S, N
interior angle foot base median  the mldpomt ~leg.”

the inlcircle
1

perpendicular bisector/'
the circumcenter,

the incenter  angle bisector

Hinh 0.1

2. Speaking and writing

Exercise 6.2. Complete the following sentences.

a) Two trianglesare ...................... if their corresponding sides
are equal in length and their corresponding angles are equal in size.

b) A triangle ABC is called isoscelesif ....................... ... .. ...,
............................................ .If AB = AC, then the side BC is

called the base of the isosceles triangle ABC, while the congruent sides AB
and AC are called the lateral sides of this isosceles triangle.

c) Anangleissaidtobeacuteif ............ .. .. ...

...........................................................................

e) Atriangle .. ... ... e
....... is called an acute triangle or acute-angular triangle.

f) Atriangle . ...
....... is called an obtuse triangle or obtuse-anglular triangle.

Exercise 6.3. Translate the following sentences/paragraphs into English.
a) Pudng trung binh clia tam giac 1a doan thang nbi hai trung diém ctia
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hai canh; né song song v4i canh con lai cia tam gidc va c6 d6 dai bang mét
NUA CANN NAY. oottt ettt ettt et e

b) Giasu ala dudng thang nam trén mat phéang (o). Khi do qua mobi diém
Atrén (), c6 duy nhat mot dudng thang b qua A, nam trén () va vuong goc
100 7

..........................................................................

c) Tanoi du’dng thang a vuong géc véi mat phang («) néu a vudng géc véi
moi duong thang NAM TEN (0] o v et te et e et e e et e e e e ettt

d) Diéu kién can va di dé dudng thang a vudng géc v6i mit phang (o) 1a
duong thang a vuong goc v6i hai duong thang cat nhau nam trén ().

e) Gia sit duong thang khong nam trén mit phang («). Khi dé a song song
vGi (a) khi va chi khi a song song v6i mot duong thang nao do trén («).

g) Tan6i mot tam giac 12 déu (equilateral) néu ba canh clia n6 c6 do dai
bang nhau. Tam giac déu déu c6 3 goc déeu bang 60°. ....................
h) Trong tam gi4c can dudng cao ting v6i canh ddy ciing 1a trung tuyén ctia
taAM GIAC A0, ..ot e

---------------------------------------------------------------------------

j) Pudng tron la tap cac diém trong mat phang cach mét diém cho trude
mot khoang khong doi. .........cccoiiiiiiiiiii i
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Unit 7. Linear Algebra

1. Reading

Linear algebra is the branch of mathematics concerning vector spaces,
often finite or countably infinite dimensional, as well as linear mappings
between such spaces. Such an investigation is initially motivated by a sys-
tem of linear equations in several unknowns. Such equations are naturally
represented using the formalism of matrices and vectors.

Vector space

The main structures of linear algebra are vector spaces. A vector space
over a field F is a set V together with two binary operations. Elements of V
are called vectors and elements of F are called scalars. The first operation,
called vector addition, takes any two vectors v and w and outputs a third
vector v+ w. The second operation, called scalar multiplication, takes any
scalar « and any vector v and outputs a new vector vector av. These opera-
tions satisfy the following axioms. In the list below, u, v and w are arbitrary
vectors in V; a and f are scalars in F.

1) w+v)+w=u+v+w); (Associativity of addition)
2) u+rv=v+u (Commutativity of addition)
(3) There exists an element 0 € V, called the zero vector, such that v+0=v
forallvev; (Identity element of addition)
(4) For every v €V, there exists an element —v € V, called the additive
inverse of v, such that v+ (-v) = 0; (Inverse elements of addition)

B) alu+v)=au+av;
(Distributivity of scalar multiplication with respect to vector
addition)
6) (x+Plu=au+pPu;
(Distributivity of scalar multiplication with respect to field addition)
(7) aPuw) = (@P)u;
(Compatibility of scalar multiplication with field multiplication)
(8) 1v=v, where 1 denotes the multiplicative identity in F.
(Identity element of scalar multiplication)
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Subspaces, span, and basis

Again in analogue with theories of other algebraic objects, linear algebra
is interested in subsets of vector spaces that are vector spaces themselves.

Let W be a nonempty subset of a vector space V over a field F. [f W is also
a vector space over F using the same addition and scalar multiplication
operations, then W is said to be a linear subspaces of V.

A necessary and sufficient condition for a nonempty subset W of a vector
space V over a field F to be a linear subspace of V is that W is closed under
addition and scalar multiplication, i.e, u+ v € W and au € W whenever u, v €
W and a € F.

One of most common ways of forming a subspace is to take span of a
given vectors. Let V be a vector space V over a field F. Let S = {v;, v, ..., v,}
be a set of vectors V. Then any vector v of V of the form

V=01V1+0QU2 + -+ 0pQy,

where o, a5, ...,0, are scalars, is called a linear combination of the vectors
v1,0s,...,U,. The set of all linear combinations of vectors vy, vy, ..., v, forms
a subspace of V, called the subspace spaned (or generated) by S and de-
noted by Span(S) or < S >. Symbolically,

Span(S) ={qyv1 + v +---+ay0, |0y €Ei=1,...,n}.

Clearly, Span(S) is the smallest subspace of V which contains S.

In general, there may be many ways to express a vector of Span(S) as a
linear combination of vectors vy, vs,..., v,. The question that whether the
expressions is unique leads to the following definitions.

A finite set {v, vo,..., v,} of vectors of V is said to be linearly dependent
if there exist scalars a;,a»,...,a,, not all zero, such that

QU +av+ -+ v, =0.

The set {v, v,...,v,} is said to be linearly independent it is not linearly
dependent, that is, the equality

QU]+ 0V + -+ 0V, =0 implies oy = =+ =, = 0.

By convention, we agree that the empty set is always linearly independent.

We can define linear dependence or independence for infinite sets of
vectors. Let S be a infinite set of a vector space V. We say S is linearly in-
dependent if every finite subset of S is linearly independent, otherwise the
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set is said to be linearly dependent, i.e., an infinite set of vectors of V is
linearly dependent iff a least one finite subset of it is linearly dependent.

What should we mean by the span of S in the case of S being an infinite
set of V? The difficulty is this: It is not always possible to assign a vector
as the value of an infinite linear combination a; v, + v, + -+ in a consis-
tent way. In algebra, it is customary to speak only of linear combination of
finitely many vectors. Therefore, the span of an infinite set S must be inter-
preted as the set of those vector v which are linear combinations of finitely
many elements of S:

V=0V + 0oV +-+ AUk, V€S, €E

The number k is allowed to be arbitrary large, depending on the vector v.

Let S be a (infinite or not) subset of a vector space V. If S is linearly inde-
pendent and Span(S) =V, then any vector of V can be written uniquely as
a linear combination of vectors in S. In this case, the set S is called a basis
for the vector space V.

It can be proved that, if a vector space V is spaned by a finite set, then
any two bases for V contain the same number of vectors. This number is
called the dimension of V, denoted by dim(V).

Any set of vectors that spans V contains a basis, and any linearly inde-
pendent set of vectors in V can be extended to a basis. It turns out that if
we accept the axiom of choice, every vector space has a basis; nevertheless,
this basis may be unnatural, and indeed, may not even be constructable.
For instance, there exists a basis for the real numbers considered as a vec-
tor space over the rationals, but no explicit basis has been constructed.
Linear transformations

Similarly as in the theory of other algebraic structures, linear algebra
studies mappings between vector spaces that preserve the vector-space
structure. Given two vector spaces V and W over a field F, a linear trans-
Jormation (also called linear map, linear mapping or linear operator) is
amap T:V — W that is compatible with addition and scalar multiplication:

T(u+v)=Tw)+T(v), T(au)=aoT(u)

for any vectors u, v € V and a scalar a € F.

When a bijective linear mapping exists between two vector spaces, we
say that the two spaces are isomorphic. Because an isomorphism pre-
serves linear structure, two isomorphic vector spaces are "essentially the
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same" from the linear algebra point of view. If a mapping is not an isomor-
phism, linear algebra is interested in finding its range (or image) and the
set of elements that get mapped to zero, called the kernel of the mapping.
Matrices of linear transformations

Let V be a vector space of dimension n. An ordered basis for V is an or-
dered n-tuples (vy, vo,...,v,) of vectors for which the set {v,, v,,...,v,} is a
basis of a vector space V.

Let 8 = (v1,vo,...,v,) be an ordered basis for V. Then for each v € V there
is a unique ordered n-tuple (o, ay,...,a,) of scalars for which

V=01V +002+ -+ QuUy.

The n-tuple (a;,ay,...,a,) is called the coordinate of the vector v with re-
spect to the ordered basis 4.
Now we can define the coordinate map ®4:V — F" by

06]

o2
Dgz(v)=[vig =

(007}

The column vector [v] 4 is called the coordinate vector (or coordinate ma-
trix) of v with respect to the ordered basis 4. Each vector v of V determines
and is determined by its coordinate vector.

Let 8 = (11, vs,...,v,) and & = (wy, wo,..., w,) be bases for vector spaces V
and W, respectively. Let T be a linear transformation from V to W. Suppose
that

Twj)=ajun+azjwr+---+amjwm, j=1,...,n.

Then the m x n matrix

any a2 o dip

azy dy2 - U2p
A=(aiji=1,.,mj=1,..n =

am1 Am2 - Amn

is called the matrix of f with respect to the ordered bases 2 and &. Differ-
ent choices of the ordered bases leads to different matrices. For any v in V

it holds that

[T(W)]z =Alvls.
Thus, each linear transformation from V into W is determined by its ma-
trix.
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Exercise 7.1. Fill in each blank with a suitable mathematical term from the
box.

invertible / isomorphic / isomorphism / square / eigenvalue /
eigenvector / invariant / characteristic /

a) The matrix of a linear operator T from a finite-dimensional vector space
Vintoitselfisa .......... matrix.

b) Let T:V — V be a linear operator on a vector space. A subspace W of V
iscalled .......... under Tif T(W) cW.

c) Let T:V — V be a linear operator on a vector space. If there are a scalar
A and a nonzero vector v such that T(v) =Av, then Aiscalledan ..........

of T. The vector viscalledan .......... of T.
d) Asquare matrixAis .......... iff detA # 0.
e) Let Abe asquare matrix. Thenthe.......... polynomial of A is defined

by P(A) = det(AI - A), where I be the identical matrix with the same size of
A.

f) Alinear operator T from a finite-dimensional vector space V into itself
isa.......... if and only if its determinant is nonzero.

2. Speaking and writing

Exercise 7.2. Complete the following sentences/paragraphs.
a) Any subset of a linearly independent set a vector spaceVis ...........

b) Two vectorsare ...................... iff one is a scalar multiple of
the other.

Exercise 7.3. Translate the following sentences/paragraphs into English.

a) Giao cia mot ho nhitng khéng gian vectd con ciia mét khéng gian vecto
V cingla mot khong gian vectdconcliaV. ..........ccoovveinennennn...

b) Gia stt vV 1a mot khong gian vector hitu han chiéu. Néu L 1a mot tap con
ddc 1ap tuyen tinh ctia V thi ta c6 thé bo sung thém nhiing vector vao tap L
de AUGC MOt COSG CUA V. ~ ottt ettt et

...........................................................................
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c) Néu W l1a mot khong gian con clia khong gian vector hitu han chiéu v
thi W cting httu han chiéu va dimW < dimV. Hon ntia, dimW = dimV khi va
chikhiW=V. v

lAN Bl vo e

e) Gia st AvaBlahai ma tran. Ta chi c6 thé thuc hién phép cong A + B khi
hai ma tran A va B c6 cling s6 dong va cling s6 cOt. ~>  .....covvvveeenn...

f) Da thiic dic trung clia todn t{ tuyén tinh T trén mot khong gian hitu
han chieu V khéng phu thudc vao viéc choncosécuaV. ~ .............
g) Cac gia tri riéng cua toan t tuyen tinh T la nghiém cua da thic dac
100 0= 011 1 Lo T

h) Gia sl T mot todn t tuyén tinh tit khong gian vecto hitu han chiéu v
vao chinh né. Cac khang dinh sau la tuong duong

i) T 1a kha ngugc;

ii) T 1a don anh;

ii) T 1a toan anh.

i) Gia sttv1a motkhong gian vector trén trudng s6 phiic C va T 1a mot toan
tli tuyén tinh trén V. Khi d6 T c6 it nhat mot gia tririéng. ~ .............
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APPENDICES

A. Reading mathematical symbols

A-1. Logic and sets

Symbol How to read
PAQ P and Q; the conjunction of P and Q
PvQ P or Q; the disjunction of P and Q
P=Q P implies Q; if P then Q; Q is implied by P
P<Q P if and only if Q; P is equivalent to Q; P and Q are equiva-
lent
-P not P
acA a is an element/a member of (the set capital) A; a belongs
to A; xisin A
adA a is not an element of A; a does not belong to A; a not be-
longing to A
%) (the) empty set
A={a,b,c} | Ais the set consisting elements a, b, ¢
A={x|---} | Ais the set of all x such that ---
AcB Ais contained in B; A is a subset of B
ADB A contains B; A is a superset of B
AUB the union of A and B; A union B
ANB the intersection of A and B, A intersect B; A intersected with
B
A\B A minus B; the difference between A and B
ACA the complement of A; capital A c; capital A bar
AxB A times B; A cross B; the cartesian product of A and B
(a,b) ordered pair a b
kCJ Ag the union of A for k from 1 to n
=1

E4AM.NTA.MATH.HNUE 45




Symbol

How to read

N Aq the intersection of A, for a belonging to I

ael

IT Ax the cartesian product of Ay for k from 1 to n

k=1

VxeA | forall (for every) x in A (such that) ...

IxeA there exists (there is) x in A (such that) ...

dxe A | there exists (there is) a unique x in A (such that) ...

AxeA there is no x in A (such that) ...

A-2. Arithmetic

Integers

0 | zero 10 | ten 20 | twenty
1 | one 11 | eleven 21 | twenty-one
2 | two 12 | twelve 22 | twenty-two
3 | three 13 | thirteen 30 | thirty
4 | four 14 | fourteen 40 | forty
5 | five 15 | fifteen 50 | fifty
6 | six 16 | sixteen 60 | sixty
7 | seven 17 | seventeen 70 | seventy
8 | eight 18 | eighteen 80 | eighty
9 | nine 19 | nineteen 90 | ninety

100 | one hundred

800 | eight hundred (not hundreds)

245 | two hundred and forty-five

—902 | minus nine hundred and two
1000 | one thousand
51 000 | fifty-one thousand
315401 | three hundred and fifteen thousand four hundred
and one
2000 000 | two million
999 999 000 | nine hundred and ninety-nine million nine hun-
dred and ninety-nine thousand
3000 000 000 | three billion; three thousand million
5000 000 000 000 | five trillion; five thousand billion
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Ordinal numbers

Oth | zeroth/noughth || 10th | tenth 20th | twentieth

Ist | first 11th | eleventh 21st | twenty-first
2nd | second 12th | twelfth 22sd | twenty-second
3rd | third 13th | thirteenth 23rd | twenty-three
4th | fourth 14th | fourteenth 24th | twenty-fourth
5th | fifth 15th | fifteenth 30th | thirtieth

6th | sixth 16th | sixteenth 40th | fortieth

7th | seventh 17th | seventeenth 50th | fiftieth

8th | eighth 18th | eighteenth 80th | eightieth

9th | ninth 19th | nineteenth 90th | ninetieth

Fractions (Rational numbers)

one half; one over two

seven halves; seven over two

one third; one over three

two thirds; two over three

one quarter; one fourth

three quarters/three fourths

one fifth; one over five

two fifths; two over five

one tenth; one over ten

nine tenths; nine over ten

one seventeenth

two twenty-sevenths

one twenty-first

five twenty-firsts

one thirty-second

three thirty-seconds

|>—A 3'»—1 Cl\%l'_‘ Bl’_‘ :ll'_‘ Slb—l Al [ ]—= W~ [N~

[ B3 |8l [Rla R |3 (e |l [wins [l

one forty-third ten forty-thirds; ten over forty-three
=7 | one fifty-fourth = | five fifty-fourths; five over fifty-four
15 | one and a half 53 | five and three quarters
33 | three and one third 7% | seven and two fifths

Real and complex numbers

0.03 nought point zero three; nought point oh oh three;
three thousandths
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—-0.401 minus nought point four zero one
109.25 one hundred and nine point two five
-2.3x1071% | minus two point three times ten to the (power of)
minus ten
1.02 x 108 one point zero two times ten to the (power of) 6
i i
1-3i one minus three i
X+ yi xplusyi
3-i the (complex) conjugate of three minus i
+ the addition sign
- the subtraction sign
- O X the multiplication sign
+ the division sign
= the equality sign
a=b a equals b; ais equal to b
a#b ais not equal to b; a does not equal b; a is different
from b
a=b a is approximately equal to b
a+b aplus b
a-b aminus b
atb a plus or minus b
a.b ab; a times b; a multiplied by b
sy alb a over b; a divided by b
—-a minus a; negative a; the negative of a; the opposite
ofa
+a plus or minus a
a<b a (is) less than b
a>b a (is) greater than b
a<b a (is) less than or equal to b; b (is) not less than a
a=b a (is) greater than or equal to b; a (is) not less than

b
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a<b<c aisless than bis less than c; b is greater than a and
is less than ¢
asb<c a is less than or equal to b is less than c; b is not
less than a and is less than ¢
a<b a is much less than b
a>b a is much greater than b
a? a to the b; a (raised) to the power of b; a to the b-th
power; a raised by the exponent of b
x? x squared
x3 x cubed
ab a to the (power of) minus b
x L x to the minus one; (the) reciprocal of x; x inverse
VX (the) square root of x
Jx (the) cubic root of x
vx (the) fourth root of x
Yx (the) n-th root of x
n! n factorial
(a+b)c a plus b all times (multiplied by) ¢; a plus b in
parentheses times (multiplied by) ¢
(a+ b)? a plus b all squared, a plus b in parentheses
squared
a\2
(E a over b all squared
a-b a minus b all over (divided by) ¢
(blabla)- (blbl) | blabla; the whole times blbl
b ZZ;“ blabla; the whole divided by bibl
| x| absolute value of x (if x is a real number)
|z| modulus of z (if z is a complex number)
Re(z) the real part of z
Im(z) the imaginary part of z
5% 5 percent
30° 30 degrees
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Xk x k; x subscript k; x sub k; x suffix k
xk x super (superscript) k (if k£ is an index; not expo-
nent!)
X x k j; x subscript k j; x sub k j
xi x k j; x subscript k superscript j
ka a pre-subscript k
ka a pre-superscript k
a a bar; a overbar;
a a hat
a a tilde
l,....,norl,n | 1(up)ton
X1;...;Xn xluptoxn
f ar sum k equals 1 t.o n of a (sub) k;
= sum for k (running) from 1 to n of a (sub) k
kozol an the sum from 1 to infinite of a,,
17, ax product for k (running) from 1 to n of a (sub) k
A-3. Functions
Symbol How to read
f:X—=Y (a function) f from X to' Y
X—y x maps to y; x is sent/mapped to y
f(x) f x; f of x; the function f of x
fx, f of x (comma) y
f2x;3y) f of two x (comma) three y

f(xl;x2;---)xn)

fofx1x2uptoxn

f! the inverse (function) of f; f inverse
f(A) the image of A (under f); f of A;
7t the inverse image of A (under f); f inverse of

A
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Symbol How to read
gof g circle f; g composed with f; the compos-
ite/composition of f and g
a* ato the x
e*, exp(x) exponential of x; e to the x
log, x logarithm to the base (or with base, or in
base) a of x
log x,lg x log of x; common (or decadic, or decimal)
logarithm of x
Inx natural logarithm of x; Napierian logarithm
of x
sinx sine x
COS X cosine x
tanx tan x
arcsin x arc sine x
sinhx hyperbolic sine x

A-4. Limits, derivatives and integrals

Symbol How to read
(a,b) the open interval from a to b
[a, b] the closed interval from a to b
(a, b] the (half-open) interval from a to b excluding
a; including b
00, +00 infinity, plus/minus infinity
Uy —a u n tends to/converges to/approachs a
xX—a x tends to/goes to/approachs a
)1611122 f(x) (the) limit of f (of) x as x tends to/goes

to/approachs a

fx)—lasx—a

f(x) approachs (or converges to/ is conver-
gent to) [ as x tends to/goes to/approachs a

lim f(x)

x—a*

the limit of f of x as x approachs a from
above (or from the right)
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How to read

xliri}— fx) the limit of f of x as x approachs a from be-
low (or from the left)
f=o(g) fislitleoh of g
f=0(g) fisbigohofg
f' f prime; f dashed; (the first) derivative of f
f f double prime; f double dashed; the second
derivative of f
& the third derivative of f
fm the n-th derivative of f
% d f by d x; the derivative of f by x
% d squared f by d x squared; the second
derivative of f by x
% partial d f by d x; the partial derivative of f
by x (with respect to x)
Oxf partial d x f; derivative of f with respect to x
2275 partial d squared f by d x squared; the sec-
ond partial derivative of f by x (with respect
to x)
i 222
Vf nabla f; the gradient of f
Af delta f
divf divergence of f
J fx)dx indefinite integral of f; antiderivative of f
/ f fx)dx the integral from a to b of f (of) x d x
Iy, f 6, y)dxdy g;i c}l/o;?l; iyntegral over (the domain) D of f
IS the triple integral over (the domain) D
JLfxds the line/path/curve integral of f along the
path/curve L
$cfds the contour integral of f over/around the

contour/closed curve C
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A-5. Number theory

kin

n is divisible by k; k divides n

[x]

the integer part of x

Ly

the set of integers modulo n

A-6. Linear algebra

[lx]] | the norm of x

AT | A transpose; the transpose of A

A"l | Ainverse; the inverse of A

detA | the determinant of A

A-7. Geometrics

(a,b) the point a b
AB segment AB; line AB; length of segment AB
G, AB vector a; vector A B
Za angle alpha
Z/ABC,ABC | angle ABC
a=b a is identical with b
azb a is not identical with b
alb a is perpendicular to b; a and b are perpendicular to
each other
alb (the line) a is parallel to (the line) b; (two) (lines) a
and b are parallel to each other
a~Db a is similar to b; a and b are similar to each other
= a is congruent to b; a and b are congruent to each
other
{a, b) scalar product of (vectors) a and b
[a, b] vector product of (vectors) a and b
AABC triangle A B C; triangle with vertices AB C




A-8. Greek letters (used in mathematics)

Capital letters

Letter | Name
A Lambda
Y Upsilon
r Gamma
= Xi
@ Phi
A Delta
I Pi
v Psi
C) Theta
) Sigma
Q Omega

Lowercase letters
Letter | Name Pronounce
a alpha elfo
B beta 'beito/'bito
Y gamma 'geemo
) delta 'delto
€€ epsilon | 'epso lon/ep'sailon
C zeta 'zeito/ 'zito
n eta ‘eito/'ito
0,9 theta ‘Beito/ Bito
L iota ai'outo
K kappa keaepo
A lambda leemdo
v mu mju:
v nu nju:
3 Xi zai/sai Greek: ksi
0 pi pai
0,0 rho rov
0,G sigma 'sigmo
T tau tau
b, @ phi fai
X chi kai
\Uj psi sai/psai
v upsilon | 'apso lon/ap'sailon
® omega | ov'migo/ou'meigo

o4
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