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Unit 1. Sets and Functions

1. Reading

The concept of set and operations on sets
The concept of set plays an extraordinarily important role in modern

mathematics because, in modern formal treatments, most mathematical
objects (numbers, relations, functions, etc.) are defined in terms of sets.
There are several theories of sets used in the discussion of the foundations
of mathematics. Here we shall briefly discuss very basic set-theoretic con-
cepts in the naive point of view. Unlike axiomatic set theories, which are
defined using a formal logic, naive set theory is defined informally, in nat-
ural language.
Basic notations

In naive set theory, a set is described as a well-defined collection of ob-
jects. These objects are called the elements or members of the set. Objects
can be anything: numbers, people, other sets, etc.

We shall denote sets by capital letters A,B, . . . and their elements by low-
ercase letters a,b, . . .. The statement "the element a belongs to the set A"
will be written symbolically as a ∈ A; the expression a 6∈ A means that the
element a does not belong to the set A. If all the elements of which the set
A consists are also contained in the set B then A will be called a subset of B
and we shall write A ⊂ B. We say that A is equal to B and write A = B if A ⊂ B
and B ⊂ A, otherwise, we write A 6= B. The set A is said to be a proper subset
of the set B, written A(B, if A ⊂ B and A 6= B.

Sometimes, in speaking about an arbitrary set (for example, about the
set of roots of a given equation) we do not know in advance whether or
not this set contains even one element. For this reason it is convenient to
introduce the concept of the so-called empty set , that is, the set which does
not contain any elements. We shall denote this set by the symbol ;. Every
set contains ; as a subset.

How does one go about specifying a set? If the set has only a few ele-
ments, one can simply list the elements in the set, writing "A is the set con-
sisting of elements a, b, c". In symbols, this statement becomes A = {a,b,c},
where the curly brackets are used to enclose the list of elements.

The usual way to specify a set, however, is to take some set A of ob-
jects and some property that elements of A may or may not possess, and
to form the set consisting of all elements of A having that property. For
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instance, one might take the set of real numbers and form the subset B
consisting of all even integers. In symbols, this statement becomes B = {x |
x is an even integer}. Here the braces stand for the words "the set of", and
the vertical bar stands for the words "such that". The equation is read "B is
the set of all x such that x is an even integer".
Union, intersection and difference

If A and B are arbitrary sets, then their union, written A∪B, is the set
consisting of all elements which belong to at least one of the sets A and
B. The intersection of two sets A and B, denoted by A∩B, is the set which
consists of all the elements belonging to both A and B. The difference of
the sets A and B, written A\B, is the set of those elements in A which are not
contained in B. In general it is not assumed here that B ⊂ A. If B ⊂ A, A\B is
also called the complement of B in A. In symbols, we write

A∪B = {x | x ∈ A∨x ∈ B},

A∩B = {x | x ∈ A∧x ∈ B},

A\B = {x | x ∈ A∧x 6∈ B}.

The logical signs "∧" and "∨" are read "and" and "or" respectively.
In certain settings all sets under discussion are considered to be subsets

of a given universal set U. In such cases, U\A is called the absolute com-
plement or simply complement of A, and is denoted by Ac or A. In symbols,
Ac = {x | x 6∈ A}.

The following are useful properties of the operators mentioned above:

(A∪B)∩C = (A∩C)∪ (B∩C), B∩C = B∪C,

(A∩B)∪C = (A∪C)∩ (B∪C), B∪C = B∩C,

A = A, A\B = A∩B.

Cartesian product

Given sets A and B, we define their Cartesian product A×B to be the set
of all ordered pairs (a,b) for which a is an element of A and b is an element
of B. Formally,

A×B = {(a,b) | a ∈ A,b ∈ B}.

We can extend this definition to a set A×B×C of ordered triples, and
more generally to sets of ordered n-tuples for any positive integer n. It is
even possible to define infinite Cartesian products, but to do this we need
a more recondite definition of the product.
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Functions

The concept of function

The concept of function is one you have seen many times already, so it is
hardly necessary to remind you how central it is to all mathematics. In this
subsection, we give the precise mathematical definition, and we explore
some of the associated concepts.

A function is usually thought of as a rule that assigns to each element
of a set A, an element of a set B. In calculus, a function is often given by
a simple formula such as f (x) = 3x2 +2 or perhaps by a more complicated
formula such as

f (x) =
∞∑

k=1
xk .

One often does not even mention the sets A and B explicitly, agreeing to
take A to be the set of all real numbers for which the rule makes sense and
B to be the set of all real numbers. As one goes further in mathematics,
however, one needs to be more precise about what a function is. Math-
ematicians think of functions in the way we just described, but the defi-
nition they use is more exact. This definition relies on the notion of the
cartesian product.

A function (or mapping ) f from X to Y is a subset G of the cartesian
product X×Y subject to the following condition: every element of X is the
first component of one and only one ordered pair in the subset. In other
words, for every x in X there is exactly one element y such that the ordered
pair (x, y) belongs to G. This formal definition is a precise rendition of the
idea that to each x is associated an element y of Y, namely the uniquely
specified element y with the property just mentioned.

A function f from X to Y is commonly denoted by f : X → Y. The sets X is
called domain of f , while Y is called codomain of f . The elements of X are
called arguments of f . For each argument x, the corresponding unique y
in the codomain is called the value of f at x or the image of x under f . It is
written as f (x). One says that f associates y with x or maps x to y . This is
abbreviated by y = f (x).

If A is any subset of the domain X, then the set f (A) = { f (x) | x ∈ A} is called
the image of A under f . Especially, f (X) is called the range or the image of
f . On the other hand, if B is subset of Y, the set f −1(B) = {x | f (x) ∈ B} is called
the inverse image or preimage of B under f .
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Injective and surjective functions

A function f : X → Y is called injective (or one-to-one, or an injection) if
f (a) 6= f (b) for any two different elements a and b of X. It is called surjective
(or f is said to map X onto Y) if f (X) = Y. That is, it is surjective if for every
element y in the codomain there is an x in X such that f (x) = y . Finally, f is
called bijective if it is both injective and surjective.

If f is bijective, there exists a function from Y to X called the inverse of
f . It is denoted by f −1, read " f inverse", and defined by letting f −1(y) be
that unique element x of X for which f (x) = y . Given y ∈ Y, the fact that f is
surjective implies that there exists such an element x ∈ X; the fact that f is
injective implies that there is only one such element x. It is easy to see that
f −1 is also bijective.
Restrictions and extensions

Given function f : X → Y. If A is any subset of X, the restriction of f to
A is the function f |A from A to Y such that f |A(a) = f (a) for all a in A. The
notation f |A is read " f restricted to A". If g is a restriction of f , then it is
said that f is an extension of g .
Function composition

Given functions f : X → Y and g : Y → Z. The composite (or composition)
of f and g is the function g ◦ f : X → Z defined by (g ◦ f )(x) = g ( f (x)),∀x ∈ X.

Note that g◦ f is defined only when the codomain of f equals the domain
of g .

Exercise 1.1. Fill in each blank with a suitable mathematical term. Some
terms are given in the box below.

bijection / graph / periodic / superset / surjection / one-to-one

Example. A set A is . . . . . . . . . . . . . . . . of a set B if A is a subset of B, but B is
not a subset of A.
 A set A is a proper subset of a set B if A is a subset of B, but B is not a

subset of A.

a) The . . . . . . . . . . of {1,2,3,4} and {1,3,5} is the set {1,3}.

b) The . . . . . . . . . . of {a,b} in {a,b,c} is the set {c}.

c) The empty set is a . . . . . . . . . . of every set.

d) If A is a subset of B, then B is called a . . . . . . . . . . of A.

e) A mapping f : X → Y is . . . . . . . . . . if, for any y ∈ Y, f −1(y) contains not
more than one element.
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f) A function f is . . . . . . . . . . if and only if f −1(y) is not empty for any y in
its codomain.

g) A function f : X → Y is a . . . . . . . . . . if and only if for any y ∈ Y there is a
unique element x ∈ X such that f (x) = y .

h) The . . . . . . . . . . of a function f is the set of all possible values of f (x) as
x varies throughout the domain.

i) If f is a function with domain A, then its . . . . . . . . . . is the set of ordered
pairs {(x, f (x)) | x ∈ A}.

j) The sine and cosine functions are . . . . . . . . . . with the same period 2π.

2. Speaking and writing

Exercise 1.2. Read aloud the following notations/expressions/statements.
Refer to appendices A-1, A-2 and A-3. Leaners are encouraged to write
down the words they read.

Example. A = {x ∈R | x É 3}. It is read as "A is the set of all real numbers that
are less than or equal to 3".

Example. f −1(A∩B) = f −1(A)∩ f −1(B). It is read as "The inverse image of
the intersection of A and B (under f ) equals the intersection of the inverse
images of A and B" or " f inverse of A intersection B is equal to f inverse of
A intersection f inverse of B".

a) A = {2,4,6,8}.

b) A = {n ∈N | 10 É n É 100}.

c) A ⊂ B ⇒ A∪B = B.

d)
n⋂

k=1
Ak =

n⋃
k=1

Ak .

e) x ∈ A∪B ⇔ (x ∈ A∨x ∈ B).

f ) x ∈ A\B ⇔ (x ∈ A∧x 6∈ B).

g) f −1(A∪B) = f −1(A)∪ f −1(B).

h) f −1(A\B) = f −1(A)\ f −1(B).

i) f (A∪B) = f (A)∪ f (B).

j) f (x) = 2x ln x.

k) f (x) = 3px. sin x
x2+px

.

l) P(x) =
n∑

k=0
ak xk .

Exercise 1.3. Translate the following sentences into Vietnamese.

Example. Ta nói hai tập hợp A và B tương đương (equivalent) với nhau
hay có cùng lực lượng (cardinality) nếu có một song ánh từ A vào B.
 We say that two sets A and B are equivalent (or have the same cardi-

nality) if there exists a bijection f from A into B.

a) Nếu A là tập con của B và B là tập con của C thì A là tập con của C. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Kí hiệu P (X) là tập hợp tất cả các tập con của tập hợp X. Nếu X có n
phần tử thì P (X) có 2n phần tử. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Ta nói hai tập hợp A và B rời nhau (disjoint) nếu chúng không có phần
tử chung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Để chứng minh tập hợp A là tập con của tập hợp B ta chứng tỏ mỗi phần
tử của A đều là phần tử của B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Nếu f : X → Y và g : Y → Z là những đơn ánh thì ánh xạ hợp thành h = g ◦ f
cũng là một đơn ánh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f ) Ta nói tập hợp A là hữu hạn (finite) nếu A tương đương với tập hợp
{1,2, . . . ,n} với số nguyên dương n nào đó. Nếu tập hợp A không hữu hạn thì
được gọi là vô hạn (infinite). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) Ta nói tập hợp A là đếm được (countable) nếu nó tương đương với tập
hợp các số nguyên Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h) Tập hợp A là vô hạn khi và chỉ khi A tương đương với một tập con thực
sự nào đó của nó. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 1.4. Prove the following assertions. Write down proofs and talk
things out with your classmates or friends.

Example. A\(A\B) = A∩B.

Proof. In order to show the two sets are equal, we will show that an ele-
ment belongs to one if and only if it belongs to the other. We have

x ∈ A\(A\B) ⇔ (x ∈ A)∧ [x 6∈ (A\B)]

⇔ (x ∈ A)∧ [(x 6∈ A)∨ (x ∈ B)]

⇔ [(x ∈ A)∧ (x 6∈ A)]∨ [(x ∈ A)∧ (x ∈ B)]

⇔ (x ∈ A)∧ (x ∈ B)

⇔ x ∈ A∩B.
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Thus, A\(A\B) = A∩B. The equality can be also proved as follows:

A\(A\B) = A\(A∩B) = A∩A∩B = A∩ (A∪B)

= A∩ (A∪B) = (A∩A)∪ (A∩B) =;∩ (A∩B) = A∩B.

Example. If functions f : X → Y and g : Y → Z are surjective, then the com-
posite g ◦ f is also surjective.

Proof. Suppose both f and g are surjective. For any z in Z, since g is sur-
jective, there exists an y ∈ Y such that g (y) = z. Also, since f is surjective,
there exists x ∈ X such that y = f (x). Thus, z = g ◦ f (x), and therefore g ◦ f is
surjective.

a) A∪ (A∩B) = A.

b) A\(B∩C) = (A\B)∪ (A\C).

c) A× (B∪C) = (A×B)∪ (A×C).

d) A× (B\C) = (A×B)\(A×C).

e) If functions f : X → Y and g : Y → Z are injective, then the composite g ◦ f
is also injective.

f) The function f :R→R defined by f (x) = 2x +1 is bijective.

g) Let f : X → Y be a function, A ⊂ Y. Then f ( f −1(A)) ⊂ A and equality holds
if f is surjective.

h) Let f : X → Y be a function, A,B ⊂ X. Then f (A∩B) ⊂ f (A)∩ f (B) and equal-
ity holds if f is injective.

Unit 2. Real Numbers. Limit and Continuity

1. Reading

Construction of the real numbers
There are many ways to construct the real number system, for exam-

ple, starting from natural numbers, then defining rational numbers alge-
braically, and finally defining real numbers as equivalence classes of their
Cauchy sequences or as Dedekind cuts, which are certain subsets of ratio-
nal numbers. Another way is simply to assume a set of axioms for the real
numbers and work from these axioms. In the present subsection, we shall
sketch this approach to the real numbers.

Firstly, let us introduce some needed notations.
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Totally ordered set. Least upper and greatest lower bounds
A relation on a set X is a subset R of the cartesian product X×X.
If R is a relation on X, we use the notation xRy to mean the same thing as

(x, y) ∈ R. We read it "x is in the relation R to y ."
Recall that a function f : X → X is also a subset of X×X. But it is a subset

of a very special kind: namely, one such that each element of X appears as
the first coordinate of an element of f exactly once. So any function f from
X into itself is also a relation on X. The inverse is not always true.

A relation R on a set X is called an total order relation (or linear order ,
or simple order) if it has the following properties:

(1) For all x in R, x É x; (reflexivity)
(2) For all x and y in R, if x É y and y É x, then x = y ; (antisymmetry)
(3) For all x, y and z in R, if x É y and y É z, then x É z; (transitivity)
(4) For all x and y in R, either x É y or y É x. (totality)

If É is a total order relation on the set X, then the couple (X,É) is called a
totally ordered set .

Let (X,É) be a totally ordered set. Let A be subset of X. We say that the
element a is the largest element of A if a ∈ A and if x É a for every x ∈ A.
Similarly, we say that a is the smallest element of A if a ∈ A and a É x for
every x ∈ A. It is easy to see that a set has at most one largest element and
at most one smallest element.

We say that the subset A of X is bounded above if there is an element b of
X such that x < b for every x ∈ A; the element b is called an upper bound for
A. If the set of all upper bounds for A has a smallest element, that element
is called the least upper bound, or the supremum, of A. It is denoted by
sup A; it may or may not belong to A. If it does, it is the largest element of A.

Similarly, A is bounded below if there is an element b of X such that b É x
for every x ∈ A; the element b is called lower bound for A. If the set of all
lower bounds for A has a largest element, that element is called the greatest
lower bound,or the infimum, of A. It is denoted by inf A; it may or may not
belong to A. If it does, it is the smallest element of A.
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Binary operation
A binary operation on a set X is a function f mapping X×X into X.
When dealing with a binary operation f on a set X, we usually use a no-

tation different from the standard functional notation. Instead of denoting
the value of the function f at the point (x, y) by f (x, y), we usually write the
symbol for the function between the two coordinates of the point in ques-
tion, writing the value of the function at (x, y) as x f y . Furthermore (just as
was the case with relations), it is more common to use some symbol other
than a letter to denote an operation. Symbols often used are the plus sym-
bol +, the multiplication symbols · and ◦, and the asterisk ∗; however, there
are many others.

Axioms of real numbers
A model for the real number system consists a set R, two binary opera-

tions + and · on R (called addition and multiplication, respectively), and
a total order relation É on R satisfying the following properties:

1) (R,+, ·) forms a field. In other words,
• For all x, y and z in R, (x+ y)+z = x+ (y +z) and (x · y) ·z = x · (y ·z);

(associativity of addition and multiplication)
• For all x and y in R, x + y = y +x and x · y = y ·x;

(commutativity of addition and multiplication)
• For all x, y and z in R, x · (y + z) = (x · y)+ (x · z);

(distributivity of multiplication over addition)
• There exists an element of R, called zero and denoted by 0, such

that x +0 = x, for all x in R; (existence of additive identity)
• There exists an element of Rwhich is different from 0, called one

and denoted by 1, such that x ·1 = x, for all x in R;
(existence of multiplicative identity)

• For every x in R, there exists an element −x in R, called the neg-
ative (or opposite) of x, such that x + (−x) = 0;

• For every x 6= 0 in R, there exists an element x−1 in R, called the
reciprocal of x, such that x · x−1 = 1.

2) The field operations + and · are compatible with the order É. In other
words,

• For all x, y and z in R, if x É y , then x + y É y + z;
(preservation of order under addition)

• For all x, y and z in R, if x É y and 0 É z, then x · z É y · z.
(preservation of order under multiplication)

3) The order É is complete in the following sense: every non-empty sub-
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set of R bounded above has a least upper bound.
It can be proved that any two models for the real number system must

be isomorphic, i.e., there is a bijection between the two sets of the mod-
els preserving both the field operations and the order. For this reason, any
model for the real number system defines "the" real number system, in
other words, the real number system is defined uniquely up to an isomor-
phism.
Some notations

Let (R,+, ·,É) be the real number system. Then each element x of R is
called a real number . We say a real number x to be positive if x > 0, and to
be negative of x < 0. Here we write a < b if a É b and a 6= b. It can be proved
that the number 1 is positive. Let us denote by R+ the set of all positive real
numbers.
Natural numbers, integers and rational numbers

A subset A of the real numbers is said to be inductive if it contains the
number 1, and if for every x in A, the number x+1 is also in A. Let A be the
collection of all inductive subsets of R. Then the set Z+ of positive integers
is defined by the equation

Z+ = ⋂
A∈A

A.

The sets N of natural numbers, Z of integers, and Q of rational numbers
are respectively defined by

N= {0}∪Z+,

Z= {x | x = 0 or x ∈Z+ or −x ∈Z+},

Q= {x · y−1 | x, y ∈Z, y 6= 0}.

Exercise 2.1. Fill in each blank with a suitable mathematical term from the
box.

bounded / continuous / convergent / decreasing / defined / dense /
increasing / integer / irrational / maximum / minimum / monotone

/ monotonically / positive / sequence / series / strictly / uniformly

a) A real number that is not rational is called . . . . . . . . . . .

b) The set of rational numbers is . . . . . . . . . . in R, that is, for any a and b
in R, a < b, there exists a rational number c such that a < c < b.

c) Each function u :N→ R from the set of natural numbers into the set of
real numbers is called a . . . . . . . . . . of real numbers.
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d) Any bounded sequence of real numbers has a . . . . . . . . . . . . . . . .
subsequence.

e) If the sequence (un) is a monotonically . . . . . . . . . . and is . . . . . . . . . .
from below, then (un) is convergent.

f) If a sequence is either increasing or decreasing it is called a . . . . . . . . . .
sequence.

g) If the real-valued function f is . . . . . . . . . . on a closed interval [a,b] and
λ is some number between f (a) and f (b), then there is some number c in
[a,b] such that f (c) = λ.

h) If the real-valued function f is continuous on the closed interval [a,b],
then f is . . . . . . . . . . continuous on this interval.

i) If f (x) < f (y) for all x, y in [a,b], x < y , then we say that f is . . . . . . . . . .
increasing on [a,b].

j) Principle of mathematical induction. If for each . . . . . . . . . . integer n
there is a corresponding statement Pn, then all the statements Pn are true,
provided the following two conditions are satisfied:

(1) P1 is true.
(2) Whenever k is a positive . . . . . . . . . . such that Pk is true, then Pk+1 is

also true.

2. Speaking and writing

Exercise 2.2. State the definition for each of the following concepts. Use
given hints.

Example. Continuity of a function at a point.  A function f : D → R is
said to be continuous at a point x0 ∈ D if lim

x→x0
f (x) = f (x0), in other words,

for every ε > 0 there exists a δ > 0 such that for all x ∈ D, if |x − c| < δ then
| f (x)− f (x0)| < ε.
Example. Boundedness of a function. We say that a function f : D → R

is bounded if there exists a positive number M such that | f (x)| É M for all
x ∈ D.

a) Convergence of a sequence. We say that a sequence (un) . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Cauchy sequence of a real numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) The limit of a function as x approachs x0. A real number l . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) The limit of a function as x approachs ∞. We call a real number l .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Uniform continuity of a function on a set D. A function . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 2.3. Read aloud the following notations/expressions/statements.
Refer to appendices A-1 − A-4. Leaners are encouraged to write down the
words they read.

Example. ∀ε> 0∃δ> 0∀x ∈ I (0 < |x −a| < δ⇒| f (x)− l | < ε).
 It is read as "For any positive number ε, there exists a positive number

δ such that for every (real number) x in I, if the distance from x to a (or the
absolute value of x minus a) is greater than zero and is less than δ, then the
distance from f of x to l is less than ε".

a) 0.0012 = 12×10−4. j) aloga b = b (0 < a 6= 1,b > 0).

b) π≈ 3.14. k) loga

n∏
k=1

bk =
n∑

k=1
loga bk (0 < a 6= 1,bk > 0).

c)
1

4
+ 3

2
= 7

4
. l) (x + y)n =

n∑
k=0

(n
k

)
xk yn−k .

d) cos2 x = 1+cos2x

2
. m) |ab + cd | É

p
a2 + c2

p
b2 +d 2.

e)
p

a2 = |a|. n) ab É ap

p
+ bq

q
(a,b > 0, p, q > 1,

1

p
+ 1

q
= 1).

f ) lim
x→0+

ln x =−∞. o) ∀ε> 0∃N ∈N (n Ê N ⇒|un −a| < ε).

g) lim
x→−∞2x = 0. p) ∀M > 0∃N > 0∀x ∈R (x <−N ⇒ f (x) > M).

h) lim
x→0

ex −1

x
= 1. q) M = sup A ⇔

{
a É M,∀a ∈ A

∀ε> 0∃a0 ∈ A : M−ε< a0.

i) (ab)c = abc (a > 0). r) m = inf A ⇔
{

m É a,∀a ∈ A

∀ε> 0∃a0 ∈ A : a0 < m +ε.

Exercise 2.4. Translate the following sentences/paragraphs into English.
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a) Mỗi dãy số đơn điệu tăng và bị chặn trên đều hội tụ. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Một dãy số là hội tụ khi và chỉ khi nó là dãy Cauchy. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Hàm số f liên tục tại x0 khi và chỉ khi với mọi dãy số {xn} ⊂ D, nếu xn → x0

thì f (xn) → f (x0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Nếu hàm số f liên tục trên đoạn [a,b] thì f bị chặn trên đoạn này, nghĩa
là, tồn tại số dương M sao cho | f (x)| É M với mọi x ∈ [a,b]. . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Nếu f là hàm số liên tục và đơn điệu nghiêm ngặt trên đoạn [a,b] thì f
có hàm số ngược cũng là, một hàm liên tục và đơn điệu nghiêm ngặt. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f ) Giả sử ( fn) là một dãy hàm liên tục trên [a,b] và hội tụ đều đến hàm f
trên đoạn này thì f liên tục trên [a,b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) Giả sử f là hàm số liên tục và đơn điệu nghiêm ngặt trên [a,b]. Nếu
f (a). f (b) < 0 thì phương trình f (x) = 0 có nghiệm duy nhất trên [a,b]. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 2.5. Using the axioms of real numbers, prove the following prop-
erties for R. Write down the proofs and talk things out with your classmates
or friends.

Example. If x + y = x, then y = 0.

Proof. We have

x + y = x ⇒ y +x = x (commutativity of addition)

⇒ y +x + (−x) = x + (−x) ("+" is an operation)

⇒ y +0 = 0 (property of −x)

⇒ y = 0. (property of 0)

So the assertion is proved.

a) If x + y = x, then y = 0. b) 0 · x = 0.
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c) −0 = 0.
d) −(−x) = x.
e) x · (−y) =−(x · y).
f ) (−1) · x =−x.

g) x · (x − y) = x · y −x · z.
h) x É y ∧ z É w ⇒ x + z É y +w .
i) x > 0∧ y > 0 ⇒ x y > 0.
j) x > 0 ⇔−x < 0.

Exercise 2.6. For the following assignments, write down your solutions and
talk things out with your classmates or friends.

Example. Prove that
n∑

i=1
(2i −1) = n2 for every positive integer n.

Solution. The statement is true for n = 1 since
1∑

i=1
(2i −1) = 1 = 12.

Assume that the statement is true for some positive integer k, that is,
k∑

i=1
(2i −1) = k2. Then we have

k+1∑
i=1

(2i −1) =
k∑

i=1
(2i −1)+2(k +1)−1

= k2 +2k +1 (by the induction hypothesis)

= (k +1)2.

This means the statement is true for k + 1. By principle of mathematical
induction, the statement is true for all positive integer n.

a) Let A and B be nonempty bounded subsets of R. Explain why if A ⊂ B,
then sup A É supB and inf A Ê infB.

b) Let A = { n
n+1 | n ∈N}. Find sup A and inf A.

c) Prove by induction that for each positive integer n,

n∑
i=1

(2i −1)2 = n(2n −1)(2n +1)

3
.

d) Prove by contradiction that the square root of 3 is irrational.

e) Prove that a convergent sequence has a unique limit.

f) Prove that if f is a real-valued function which is continuous on a closed
interval [a,b], then f is bounded on [a,b].
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Unit 3. Calculus

1. Reading

Calculus is a branch of mathematics focused on limits, functions, deriva-
tives, integrals, and infinite series. While geometry is the study of shape
and algebra is the study of operations and their application to solving equa-
tions, calculus is the study of change. It has widespread applications in sci-
ence, economics, and engineering and can solve many problems for which
algebra alone is insufficient.

Calculus has two major branches, differential calculus and integral cal-
culus, which are related by the fundamental theorem of calculus.

Differential calculus
Differential calculus is the study of the definition, properties, and appli-

cations of the derivative of a function.
The concept of derivative

Let f be a given real-valued function of a single real variable. It is often
written as y = f (x). Usually we call x the independent variable and y the
dependent variable. Sometimes, x is called the input , while y is called the
output .

Geometrically, the derivative of f at a point equals the slope of the tan-
gent line to the graph of the function at that point. It determines the best
linear approximation to the function at that point.

If the function f is linear (that is, if the graph of the function is a straight
line), then the function can be written as y = mx+b, b is the y-intercept, and

m = rise
run

= change in y

change in x
= ∆y

∆x
.

This gives an exact value for the slope of a straight line. If the graph of the
function f is not a straight line, however, then the change in y divided by
the change in x varies. Derivatives give an exact meaning to the notion
of change in output with respect to change in input. To be concrete, fix a
point a in the domain of f . (a, f (a)) is a point on the graph of the function.
If h is a number close to zero, then a +h is a number close to a. There-
fore (a +h, f (a +h)) is close to (a, f (a)) (in case f is continuous). The slope
between these two points is

m = f (a +h)− f (a)

h
.
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This expression is called a difference quotient . A line through two points
on a curve is called a secant line, so m is the slope of the secant line be-
tween (a, f (a)) and (a+h, f (a+h)). The secant line is only an approximation
to the behavior of the function at the point a because it does not account
for what happens between a and a+h. It is not possible to discover the be-
havior at a by setting h to zero because this would require dividing by zero,
which is impossible. The derivative of f at the point a is defined by taking
the limit as h tends to zero:

f ′(a) = lim
h→0

f (a +h)− f (a)

h
.

By finding the derivative of f at every point in its domain, it is possible to
produce a new function, denoted by f ′ and called the derivative function
or just the derivative of the function f .

If the derivative of f exists at a point x, then f is said to be differentiable
at x. The process of finding the derivative of f is called differentiation.
Some definitions and theorems

Let f be a (real-valued) function with the domain D ⊂R. We say the func-
tion f attains an absolute (or global) maximum at c in D if f (c) Ê f (x) for
all x in D. The number f (c) is called the (absolute) maximum value of f
on D. Similarly, f attains an absolute minimum at c in D if f (c) É f (x) for
all x in D and the number is called the (absolute) minimum value of f on
D. The maximum and minimum values of are called the extreme values of
f .

A point x0 of D is called a local (or relative) maximum point of f if there
is some δ> 0 such that

f (x) É f (x0) for all x ∈ D∩ (x0 −δ, x0 +δ).

The number f (x0) itself is called a local (or relative) maximum of f .
Local minimum points and local minima are defined similarly. A local

minimum or local maximum of f is called a local extremum of f .
Theorem (Fermat’s theorem). If a function f defined on (a,b) and has a
local maximum (or minimum) at x ∈ (a,b), and f is differentiable at x,
then f ′(x) = 0.
Theorem (Rolle’s theorem). If a function f is continuous on [a,b] and dif-
ferentiable in (a,b), and f (a) = f (b), then there exists a number x in (a,b)
such that f ′(x) = 0.
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Theorem (The mean value theorem). If f is a continuous function on [a,b]
which is differentiable in (a,b), then there is a point c in (a,b) such that

f (b)− f (a) = f ′(c)(b −a).

Theorem. Suppose a function f is differentiable in (a,b).
(i) If f ′(x) Ê 0 for all x ∈ (a,b), then f is monotonically increasing on (a,b).

(ii) If f ′(x) = 0 for all x ∈ (a,b), then f is a constant function.
(iii) If f ′(x) É 0 for all x ∈ (a,b), then f is monotonically decreasing on (a,b).

Integral calculus
Integral calculus is the study of the definitions, properties, and applica-

tions of two related concepts, the indefinite integral and the definite inte-
gral.

The indefinite integral is the antiderivative, the inverse operation to the
derivative. F is an indefinite integral of f when f is a derivative of F. (This
use of lower- and upper-case letters for a function and its indefinite inte-
gral is common in calculus.)

The definite integral, also called Riemann integral, inputs a function
and outputs a number. Given a function f of a real variable x and an inter-
val [a,b] of the real line, the definite integral

∫ b
a f (x)d x is defined informally

to be the area of the region in the x y-plane bounded by the graph of f , the
x-axis, and the vertical lines x = a and x = b, such that area above the x-
axis adds to the total, and that below the x-axis subtracts from the total.
Formally, the definite integral is defined as the limit of a Riemann sum of
the function with respect to a tagged partition of the interval.

A tagged partition is a finite sequence

a = x0 É t1 É x1 É t2 É x2 É ·· · É xn−1 É tn É xn = b.

This partitions the interval [a,b] into n sub-intervals [xi−1, xi ] indexed by
i , each of which is "tagged" with a distinguished point ti ∈ [xi−1, xi ]. Let
4i = xi − xi−1 be the width of sub-interval i . The mesh of such a tagged
partition is the width of the largest sub-interval formed by the partition,
max

1ÉiÉn
4i . A Riemann sum of the function f with respect to such a tagged

partition is defined as
n∑

i=1
f (ti )4i ;

thus each term of the sum is the area of a rectangle with height equal to
the function value at the distinguished point of the given sub-interval, and
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width the same as the sub-interval width. The Riemann integral of a func-
tion f over the interval [a,b] is equal to a number I if: For all ε > 0 there
exists δ> 0 such that, for any tagged partition [a,b] with mesh less than δ,
we have

|I−
n∑

i=1
f (ti )4|< δ.

In this case, f is said to be integrable on the interval [a,b].
Some theorems

Theorem. If f is an integrable real-valued function on the closed interval
[a,b], then f is bounded on [a,b].
Theorem. If a function f is continuous on [a,b], then f is integrable on
[a,b].
Theorem. Let f be an integrable function on [a,b] satisfying

m É f (x) É M for all x in [a,b].

Then

m(b −a) É
∫ b

a
f (x)d x É M(b −a).

Theorem (The mean value theorem for integration). Suppose f is a con-
tinuous function on [a,b]. Then there exists a number c in [a,b] such that∫ b

a
f (x)d x = f (c)(b −a).

Fundamental theorem of calculus
The fundamental theorem of calculus is a theorem that links the concept

of the derivative of a function with the concept of the integral.
The first part of the theorem, sometimes called the first fundamental

theorem of calculus, shows that an indefinite integration can be reversed
by a differentiation. This part of the theorem is also important because it
guarantees the existence of antiderivatives for continuous functions. Specif-
ically, it is stated as follows.
Theorem. Let f be a continuous real-valued function defined on a closed
interval [a,b]. Let F be the function defined by

F(x) =
∫ x

a
f (t )d t ,∀x ∈ [a,b].

Then F is differentiable on [a,b], and F′(x) = f (x),∀x ∈ [a,b].
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The second part, sometimes called the second fundamental theorem of
calculus, allows one to compute the definite integral of a function by us-
ing any one of its infinitely many antiderivatives. This part of the theorem
has invaluable practical applications, because it markedly simplifies the
computation of definite integrals. Specifically, it says as follows:
Theorem. Let f and F be real-valued functions defined on a closed interval
[a, b] such that F′(x) = f (x) for all x ∈ [a,b]. If f is Riemann integrable on
[a,b], then ∫ b

a
f (x)d x = F(b)−F(a).

Exercise 3.1. Fill in each blank with a suitable mathematical term. Some
terms are given in the box below.

antiderivative / area / asymptotes / critical point / cubic /
decreasing / domain / first / improper / increasing / inflection /

primitive integral / second / tangent line

a) A polynomial of degree 3 P(x) = ax3 +bx2 +cx +d (a 6= 0) is called a . . . . .
. . . . . function.

b) Let f be a function defined on D. A point c in D is called a . . . . . . . . . . . .
. of f if f ′(c) = 0 or f ′(c) does not exist.

c) If a function f is differentiable on (a,b) and its derivative is nonnegative
in (a,b), then f is . . . . . . . . . . on this interval.

d) The function F(x) = sin x is an . . . . . . . . . . of the function f (x) = cos x.

e) The equation of the . . . . . . . . . . of the graph of a differentiable function
f at a point (a, f (a)) is given by y = f ′(a)(x −a)+ f (a).

f) Let f and g be continuous functions on a closed interval [a,b]. The . .
. . . . . . . . of the region bounded by the curves y = f (x), y = g (x), and lines
x = a, x = b is computed by S = ∫ b

a | f (x)− g (x)|d x.

g) Let f be nonnegative continuous function on [a,b]. The . . . . . . . . . . of
the solid obtained by rotating about the x-axis the region under the curve
y = f (x) from a to b is V =π∫ b

a f 2(x)d x.

h) The . . . . . . . . . . integral of a function f on the interval [0,+∞) is defined
by

∫ +∞
0 f (x)d x = lim

A→+∞
∫ A

0 f (x)d x.

i) Steps to sketch the graph of a function f (x):
• Find the . . . . . . . . . . of f .
• Find the . . . . . . . . . . derivative f ′(x).
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• Find . . . . . . . . . . points of f (x) - whenever f ′(x) = 0 or undefined.
• Find the . . . . . . . . . . derivative f ′′(x).
• Find . . . . . . . . . . points of f (x) - whenever f ′′(x) = 0.
• Find (vertical, horizontal, oblique) . . . . . . . . . . (if any).
• Draw the sign table for f ′(x) and f ′′(x) which contains all critical and

inflection points (and vertical asymptotes, if there are any).
• State the intervals on which f(x) is increasing, . . . . . . . . . . , concave

up and concave down.
• Computing values of f at critical and inflection points.
• Plot the critical and inflection points of the graph, and x and y inter-

cepts.
• Sketch the graph.

2. Speaking and writing

Exercise 3.2. Read aloud the following notations/expressions/statements.
Refer to appendices A-2 and A-4. Leaners are encouraged to write down
the words they read.

a) (xα)′ = αxα−1, x > 0. g) (arcsin x)′ = 1p
1−x2

,∀x ∈ (−1,1).

b) (loga x)′ = 1

x ln a
. h) ( f .g )(n)(x) =

n∑
k=0

(n
k

)
f (k)(x).g (n−k)(x).

c) ex =
∞∑

n=0

xn

n! . i)
∫ b

a uv ′d x = uv
∣∣b

a −
∫ b

a u′vd x.

d) S = ∫ b
a | f (x)− g (x)|d x. j)

∫ d xp
x2 +a2

= ln(x +
p

x2 +a2)+C.

e) V =π∫ b
a f 2(x)d x. k)

( b∫
a

f (x)g (x)d x
)2 É

b∫
a

f 2(x)d x
b∫

a
g 2(x)d x.

f ) ∆u = ∂2u

∂x2
+ ∂2u

∂y2
. l)

+∞∫
0

sin x

x
d x = π

2
.

Exercise 3.3. Translate the following sentences/paragraphs into Vietnamese.

a) Nếu hàm số f khả vi tại điểm x0 thì nó liên tục tại điểm đó. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Hàm số f (x) = |x| không khả vi tại điểm x = 0 nhưng đạt giá trị nhỏ nhất
tại điểm này. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Ta nói một hàm số đơn điệu trên một khoảng nào đó nếu nó tăng hoặc
giảm trên khoảng đó. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Nếu hàm số f liên tục trên đoạn [a,b] thì f đạt giá trị lớn nhất và giá trị
nhỏ nhất trên đoạn này. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Giả sử f là hàm số liên tục trên đoạn [a,b], khả vi trên khoảng (a,b). Để
tìm giá trị lớn nhất và giá trị nhỏ nhất của f trên [a,b]:

1. Tìm các điểm tới hạn và giá trị của f tại các điểm này.
2. Tìm giá trị của f tại a và b.
3. Các giá trị lớn nhất và nhỏ nhất trong các giá trị ở cả hai bước trên

tương ứng là giá trị lớn nhất và giá trị nhỏ nhất của f trên [a,b].
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f ) Lấy ví dụ chứng tỏ có những hàm số liên tục nhưng không khả vi. .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) Điều kiện cần để một hàm khả tích trên đoạn [a,b] là nó bị chặn trên
đoạn này. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h) Viết phương trình tiếp tuyến của đồ thị hàm số y = x2 +2 biết nó đi qua
điểm A(1,3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i) Chứng minh rằng đồ thị hai hàm số y = f (x) và y = g (x) cắt nhau tại hai
điểm phân biệt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

j) Tính diện tích hình phẳng giới hạn bởi parabol y = x2, tiếp tuyến của
parabol này tại điểm M(1,1) và trục hoành. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

k) Hãy tính thể tích của vật thể tròn xoay do quay quanh trục tung hình
phẳng giới hạn bởi các đường y = x2 và y = 1. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3.4. For the following assignments, write down your solutions and
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then discuss with your classmates.

Example. Prove the first fundamental theorem of calculus.

Proof. Let f be a continuous function on [a,b] and

F(x) =
∫ x

a
f (t )d t , x ∈ [a,b].

Fix arbitrary x in [a,b]. For any nonzero number h such that x+h ∈ [a,b] we
have

F(x +h)−F(x) =
∫ x

a
f (t )d t −

∫ x+h

a
f (t )d t =

∫ x+h

x
f (t )d t . (3.1)

According to the mean value theorem for integration, there exists a num-
ber c between x and x +h such that∫ x+h

x
f (t )d t = f (c)h.

Substituting this equality into (3.1) we obtain

F(x +h)−F(x) = f (c)h.

Dividing both sides by h gives

F(x +h)−F(x)

h
= f (c). (3.2)

Since c → x as h → 0 and f is continuous at x, we have

lim
h→0

f (c) = f (x).

Thus, we can take the limit as h → 0 the both sides of the equality (3.2) to
receive

F′(x) = f (x),

which completes the proof.

a) Prove the mean value theorem for integration.

b) Prove the second fundamental theorem of calculus.

c) Sketch the graph of the function f (x) = x3 −3x. Determine the equation
of the tangent line to the graph at x = 2.

d) Sketch the graph of the function f (x) = 2x −1

x +1
.

E4M.NTA.MATH.HNUE 25



Unit 4. Elementary Number Theory

1. Reading

Elementary number theory is a branch of number theory that investi-
gates properties of the integers by elementary methods. These methods
include the use of divisibility properties, various forms of the axiom of in-
duction and combinatorial arguments

Divisibility
Let a and b be integers, a 6= 0. If there exists an integer c such that ac = b,

then we say that a divides b and write a|b. In this case, we also say that a is
a divisor of b, or a is a factor of b, or b is divisible by a, or b is a multiple
of a. If a does not divide b, we write a 6 |b.

The basic properties of division are listed below.
Theorem. For integers a, b and c the following holds:

(1) If a 6= 0, then a|a and a|0.
(2) 1|a.
(3) If a|b and a|c, then a|(br + cs), for any integers r , s.
(4) If a|b and b|c, then a|c.
(5) If a > 0,b > 0, a|b and b|c, then a = b.
(6) If a > 0,b > 0, and a|b then a É b.

Prime number
A prime number (or a prime) is an integer greater than 1 that has no

positive divisors other than 1 and itself. An integer greater than 1 that is
not a prime number is called a composite number.

The crucial importance of prime numbers to number theory and math-
ematics in general stems from the fundamental theorem of arithmetic,
which states as follows.
Theorem. Every integer n greater than 1 factors into a product of primes:

n = p1p2 · · ·ps .

Further, writing the primes in increasing order p1 É p2 É ·· · É ps makes the
factorization unique.

Some of the primes in the product may be equal. For instance, 60 = 2 ·
2 ·3 ·5 = 22 ·3 ·5. So the fundamental theorem is sometimes stated as: every
integer greater than 1 can be factored uniquely as a product of powers of
primes:

n = pα1
1 pα2

2 · · ·pαk
k ,
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where p1 < p2 < ·· · < pk are primes, α1,α2, . . . ,αk are positive integers. This
equality is called the canonical decomposition of the integer n.

By means of the canonical decomposition of a positive integer one can
compute the values of the number-theoretic functions τ(n), S(n) and φ(n),
which denote, respectively, the number of divisors of n, the sum of the di-
visors of n and the amount of positive integers m É n that are coprime (or
relatively prime) with n (i.e., gcd(m,n) = 1):

τ(n) = (α1 +1)(α2 +1) · · · (αk +1),

S(n) = pα1+1
1 −1

p1 +1
· pα2+1

2 −1

p2 +1
· · ·

pαk+1
k −1

pk +1
,

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pk

)
.

An essential feature of these formulas is their dependence on the arith-
metical structure of n.

The prime numbers play the role of "construction blocks" from which
one can construct all other natural numbers. Therefore, questions on the
disposition of the prime numbers in the sequence of natural numbers evoked
the interest of scholars. The first proof that the set of prime numbers is
infinite is due to Euclid. Only in the middle of the 19th century did P. L.
Chebyshev take the following step in the study of the function π(x), the
number of prime numbers not exceeding n. He succeeded in proving by
elementary means inequalities that imply

0.92120
x

ln x
<π(x) < 1.10555

x

ln x

for all sufficiently large x. Actually, π(x) ∼ x

ln x
as x → ∞, but this was not

established until the end of the 19th century by means of complex anal-
ysis. For a long time it was considered impossible to obtain the result by
elementary means. However, in 1949, A. Selberg obtained an elementary
proof of this theorem.
Greatest common divisor and least common multiple

If a and b are integers and d is a positive integer such that d |a and d |b,
then d is called a common divisor of a and b. If both a and b are zero
then they have infinitely many common divisors. However, if one of them
is nonzero, the number of common divisors of a and b is finite. Hence,
there must be a largest common divisor which is called the greatest com-
mon divisor of a and b, and is denoted by gcd(a,b).
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By convention, it is accepted that gcd(0,0) = 0. The greatest common di-
visor of three or more integers may be defined similarly as for two integers.

The least common multiple of two integers a and b, usually denoted by
lcm(a,b), is the smallest positive integer that is divisible by both a and b. If
either a or b is 0, lcm(a,b) is defined to be zero. Similarly, ones can define
the least common multiple of three or more integers.

Congruence
For a positive integer n, two integers a and b are said to be congruent

modulo n, written as a ≡ b (modn), if their difference a −b is a multiple of
n. The number n is called the modulus of the congruence. The congru-
ence a ≡ b (modn) expresses that a and b have identical remainders when
divided by n.

Congruence modulo a fixed n is an equivalence relation. Indeed, for in-
tegers a, b and c, the following hold:

(1) a ≡ a (modn); (reflectivity)
(2) If a ≡ b (modn), then b ≡ a (modn); (symmetry)
(3) If a ≡ b (modn) and b ≡ c (modn), then a ≡ c (modn). (transitivity)

Therefore, the relation congruence divides the set of all integers into non-
intersecting equivalence classes which are called residue classes modulo
n. Every integer is congruent modulo n with just one of the numbers 0, . . . ,n−
1; the numbers 0, . . . ,n −1 belong to different classes, so that there are ex-
actly n residue classes, while the numbers 0, . . . ,n−1 form a set of represen-
tatives of these classes.

Congruence modulo a fixed n is compatible with both addition and mul-
tiplication on the integers. Specifically, it follows from

a ≡ b (modn) and c ≡ d (modn)

that
a ± c ≡ b ±d (modn) and ac ≡ bd (modn).

The operations of addition, subtraction and multiplication of congru-
ences induce similar operations on the residue classes. Thus, if a and b are
arbitrary elements from the residue classes A and B, respectively, then a+b
always belongs to one and the same residue class, called the sum A+B of
the classes A and B. The difference A−B and the product A ·B of the two
residue classes A and B are defined in the same way. The residue classes
modulo n form an Abelian group of order n with respect to addition.
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An important application
For a long time, number theory in general, and the study of prime num-

bers in particular, was seen as the canonical example of pure mathemat-
ics, with no applications outside of the self-interest of studying the topic.
In particular, number theorists such as British mathematician G. H. Hardy
prided themselves on doing work that had absolutely no military signifi-
cance. However, this vision was shattered in the 1970s, when it was pub-
licly announced that prime numbers could be used as the basis for the
creation of public key cryptography algorithms.

Exercise 4.1. Fill in each blank with a suitable mathematical term from the
box.

congruent / incongruent / divisible / divisor / remainder / prime
/ composite / coprime / relative / relatively / infinite / infinitely

a) An integer n is said to be even if it is . . . . . . . . . . by 2 and is odd otherwise.

b) Number 1 is neither . . . . . . . . . . nor . . . . . . . . . . .

c) If the difference a −b is not divisible by n, then a and b are said to be . .
. . . . . . . . modulo n.

d) Two integers a and b are congruent modulo n if a and b leave the same
. . . . . . . . . . when divided by n.

e) The set of all prime numbers is . . . . . . . . . . .

f ) Two integers are called relatively prime, or . . . . . . . . . . if their greatest
common divisor equals 1.

g) If ac ≡ bc (modm), and c and m are . . . . . . . . . . prime, then a ≡ b (modm).

2. Speaking and writing

Exercise 4.2. Translate the following sentences/paragraphs into English.

a) Giả sử p là một số nguyên tố, a và b là các số nguyên. Nếu p|ab thì p|a
hoặc p|b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Mọi số nguyên dương chẵn trừ số 2 đều là số nguyên tố. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Mỗi số nguyên lớn hơn 1 đều là tích của những số nguyên tố. . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Cho hai số nguyên a và b. Đặt S = {r a + sb | r, s ∈ Z và r a + sb > 0}. Số
nguyên dương d là ước số chung lớn nhất của hai số nguyên a và b khi và
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chỉ khi d là phần tử bé nhất của S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Hai số nguyên a và b là nguyên tố cùng nhau khi và chỉ khi tồn tại các
số nguyên r và s sao cho r a + sb = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f ) Với các số nguyên a, b và c, nếu a và b là nguyên tố cùng nhau và a|c, b|c
thì ab|c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) Giả sử a và b là hai số nguyên, m là số nguyên dương. Nếu a và m là
nguyên tố cùng nhau thì phương trình đồng dư tuyến tính (linear congru-
ence equation) ax ≡ b (modm) có nghiệm duy nhất. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 4.3. Solve the following problems. Write down solutions and talk
things out with your classmates or friends.

a) Show that, for any integers a, b and c, if a divides c and a +b = c then a
divides b.

b) For every positive integer n, show that 2 divides n2 −n and 6 divides
n3 −n.

c) Using induction, we show that 6 divides 7n−1, for any positive integer n.

d) Prove by induction that n3 − n2 + 2 is divisible by 3 for every positive
integer n.

e) Show that if a ≡ b (modm) and d |m, where d > 0, then a ≡ b (modd).

f ) Suppose that a ≡ b (modm) and a ≡ b (modn). Prove that if gcd(m,n) = 1,
then a ≡ b (modmn).

Unit 5. Algebra

Unit 6. Euclidean Geometry

1. Reading

Euclidean Geometry is the geometry of space described by the system of
axioms first stated systematically by Euclid in his textbook, the Elements.
Euclid’s method consists in assuming a small set of intuitively appealing
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axioms, and deducing many other propositions (theorems) from these.
However, Euclid’s axioms are incomplete, meaning that they are insuffi-
cient to produce the results one would like to be true in Euclidean geome-
try. Consequently, other axiomatic systems were devised in an attempt to
fill in the gaps. The first sufficiently precise axiomatization of Euclidean
geometry was given by D. Hilbert.

Hilbert’s system of axioms
The primary (undefined) notions of Hilbert’s system of axioms are points,

straight lines, planes, and relations between them consisting incidence
(expressed by the words "belongs to", "lie on", "contains" or "passes through",
etc), order (expressed by the word "between") and congruence" (expressed
by the word "congruent to" and denoted by the symbol "≡").

Note that, in the following, a line segment , a ray, a angle, a triangle, and
a half-plane bounded by a straight line may be defined in terms of points
and straight lines, using the relations incidence and order.

Hilbert’s system contains 20 axioms, which are subdivided into five groups.
Group I: Axioms of incidence

I.1. For any two points there exists a straight line passing through them.
I.2. There exists only one straight line passing through any two distinct

points.
I.3. At least two points lie on any straight line. There exist at least three

points not lying on the same straight line.
I.4. There exists a plane passing through any three points not lying on

the same straight line. At least one point lies on any given plane.
I.5. There exists only one plane passing through any three points not

lying on the same straight line.
I.6. If two points A and B of a straight line a lie in a plane (α), then all

points of a lie in (α).
I.7. If two planes have one point in common, then they have at least one

more point in common.
I.8. There exist at least four points not lying in the same plane.
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Group II: Axioms of order

II.1. If a point B lies between a point A and a point A, then A, B and C are
distinct points on the same straight line and B also lies between C
and A.

II.2. For any two points A and B on the straight line a there exists at least
one point C such that the point B lies between A and C.

II.3. Of any three points on a line there exists no more than one that lies
between the other two.

II.4. Let A,B,C be three points not lying in the same straight line and let
a be a straight line lying in the plane (ABC) and not passing through
any of the points A,B,C. Then, if the straight line a passes through
a point of the segment AB, it will also pass through either a point of
the segment BC or a point of the segment AC.

Group III: Axioms of congruence

III.1. Given a segment AB and a ray OX, there exists a point C on OX such
that the segment AB is congruent to the segment OC, i.e. AB ≡ OC.

III.2. If AB ≡ A′B′ and AB ≡ A′′B′′, then A′B′ ≡ A′′B′′.
III.3. On a line a, let AB and BC be two segments which, except for B,

have no points in common. Furthermore, on the same or another
line a′, let A′B′ and B′C′ be two segments which, except for B′, have
no points in common. In that case if AB ≡ A′B′ and BC ≡ B′C′, then
AC ≡ A′C′.

III.4. Let there be given an angle ∠AOB, a ray O′A′ and a half-plane π

bounded by the straight line O′A′. Then π contains one and only
one ray O′B′ such that ∠AOB ≡ ∠A′O′B′. Moreover, every angle is
congruent to itself.

III.5. If, for two triangles ABC and A′B′C′, one has AB ≡ A′B′, AC ≡ A′C′,
∠BAC ≡∠B′A′C′, then ∠ABC ≡∠A′B′C′.

Group IV: Axiom of parallels (Euclid’s axiom)

IV. Let there be given a straight line a and a point A not on that straight
line. Then there is at most one line in the plane that contains a and
A that passes through A and does not intersect a.
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Group V: Axiom of continuity

V.1. (Archimedes’ axiom) Let AB and CD be two arbitrary segments. Then
the straight line AB contains a finite set of points A1, A2, . . . , An such
that the point A1 lies between A and A2, the point A2 lies between
A1 and A3, etc., and such that the segments AA1, A1A2, . . . , An−1An are
congruent to the segment CD, and B lies between A and An .

V.2. (Cantor’s axiom) Let there be given, on any straight line (α), an infi-
nite sequence of segments A1AB1, A2B2, . . ., which satisfies two con-
ditions:
a) each segment in the sequence forms a part of the segment which
precedes it;
b) for each preassigned segment CD it is possible to find a natural
number n such that AnBn < CD.
Then (α) contains a point M belonging to all the segments of this
sequence.

All other axioms of Euclidean geometry are defined by the basic con-
cepts of Hilbert’s system of axioms, while all the statements regarding the
properties of geometrical figures and not included in Hilbert’s system must
be logically deducible from the axioms, or from statements which are de-
ducible from these axioms.

Hilbert’s system of axioms is complete; it is consistent if the arithmetic
of real numbers is consistent. If, in Hilbert’s system, the axiom about par-
allels is replaced by its negation, the new system of axioms thus obtained
is also consistent (the system of axioms of Lobachevskii geometry), which
means that the axiom about parallels is independent of the other axioms
in Hilbert’s system. It is also possible to demonstrate that some other ax-
ioms of this system are independent of the others.

Hilbert’s system of axioms is the first fairly rigorous foundation of Eu-
clidean geometry.

Some definitions and theorems

Right angle

Two angles ∠AOB and ∠COB that have the common vertex O and the
common side OB, while the other sides of these angles OA and OC lie on a
straight line and intersect at the unique point O, are called supplementary
(or adjacent) angles. An angle which is congruent to its supplementary
angle is called a right angle. If a point O lies between two points A and B,
then the angle ∠AOB is called a straight angle.

Two intersecting straight lines a and b are called perpendicular to each
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other, written a ⊥ b, if all four angles formed by them at the intersection
point are right angles.
Lengths of segments and sizes of angles

Hilbert’s axioms do not explicitly mention measurement of distances or
angles; they are constructed from the axioms. Indeed, we have the follow-
ing theorems.
Theorem. For any fixed given segment OE (O does not concide with E), there
exists a unique function that associates each segment AB with a nonnega-
tive real number, denoted by |AB| and called the length of the segment AB
measured relative to the gauge unit OE, satisfying the following properties:

(i) |OE| = 1;
(ii) if AB ≡ CD, then |AB| = |CD|;

(iii) if a point B lies between two points A and C, then |AC| = |AB|+ |BC|.
Theorem. Each angle ∠AOB is associated with some real number that is
denoted by ]AOB and called the size or measurement of the angle ∠AOB so
that the following conditions are fulfilled:

(i) 0 É]AOB Éπ;
(ii) if ∠AOB is a straight angle, then ]AOB =π;

(iii) if ∠AOB ≡∠CID, then ]AOB =]CID;
(iv) if a ray OC lies inside an angle ∠AOB, then ]AOB =]AOC+]COB.

Exercise 6.1. Fill in each blank with a suitable mathematical term. Use the
pictures (Figure 0.1) as hints.

a) A . . . . . . . . . . of a triangle is a segment connecting a vertex and the
midpoint (or center) of the opposite side.

b) The three altitudes of a triangle intersect in a single point, called the . .
. . . . . . . . of the triangle.

c) An angle that is . . . . . . . . . . . . . . . . . . . . . . to an internal angle of a triangle
is called an external angle of this triangle.

d) In a right-angular triangle the side opposite to the right angle is called
the . . . . . . . . . . . Other two sides are called . . . . . . . . . . .

e) The . . . . . . . . . . cuts every median in the ratio 2 : 1.

f ) In a triangle ABC, the . . . . . . . . . . is the intersection of the . . . . . . . . .
. bisectors; it is the center of . . . . . . . . . . , the circle passing through the
three vertices.

g) The . . . . . . . . . . of a triangle is the circle which lies inside the triangle
and touches all three its sides. Its radius is called the inradius.
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Hình 0.1

2. Speaking and writing

Exercise 6.2. Complete the following sentences.

a) Two triangles are . . . . . . . . . . . . . . . . . . . . . . if their corresponding sides
are equal in length and their corresponding angles are equal in size.

b) A triangle ABC is called isosceles if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If AB ≡ AC, then the side BC is
called the base of the isosceles triangle ABC, while the congruent sides AB
and AC are called the lateral sides of this isosceles triangle.

c) An angle is said to be acute if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) An angle is said to be obtuse if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) A triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . is called an acute triangle or acute-angular triangle.

f ) A triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . is called an obtuse triangle or obtuse-anglular triangle.

Exercise 6.3. Translate the following sentences/paragraphs into English.

a) Đường trung bình của tam giác là đoạn thẳng nối hai trung điểm của
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hai cạnh; nó song song với cạnh còn lại của tam giác và có độ dài bằng một
nửa cạnh này. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Giả sử a là đường thẳng nằm trên mặt phẳng (α). Khi đó qua mỗi điểm
A trên (α), có duy nhất một đường thẳng b qua A, nằm trên (α) và vuông góc
với a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c) Ta nói đường thẳng a vuông góc với mặt phẳng (α) nếu a vuông góc với
mọi đường thẳng nằm trên (α). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Điều kiện cần và đủ để đường thẳng a vuông góc với mặt phẳng (α) là
đường thẳng a vuông góc với hai đường thẳng cắt nhau nằm trên (α). . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Giả sử đường thẳng không nằm trên mặt phẳng (α). Khi đó a song song
với (α) khi và chỉ khi a song song với một đường thẳng nào đó trên (α). . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f ) Tổng ba góc của một tam giác bằng 180◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) Ta nói một tam giác là đều (equilateral) nếu ba cạnh của nó có độ dài
bằng nhau. Tam giác đều đều có 3 góc đều bằng 60◦. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h) Trong tam giác cân đường cao ứng với cạnh đáy cũng là trung tuyến của
tam giác đó. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i) Trong một tam giác, tổng độ dài hai cạnh lớn hơn độ dài cạnh còn lại.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

j) Đường tròn là tập các điểm trong mặt phẳng cách một điểm cho trước
một khoảng không đổi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Unit 7. Linear Algebra

1. Reading

Linear algebra is the branch of mathematics concerning vector spaces,
often finite or countably infinite dimensional, as well as linear mappings
between such spaces. Such an investigation is initially motivated by a sys-
tem of linear equations in several unknowns. Such equations are naturally
represented using the formalism of matrices and vectors.

Vector space
The main structures of linear algebra are vector spaces. A vector space

over a field F is a set V together with two binary operations. Elements of V
are called vectors and elements of F are called scalars. The first operation,
called vector addition, takes any two vectors v and w and outputs a third
vector v+w . The second operation, called scalar multiplication, takes any
scalar α and any vector v and outputs a new vector vector αv . These opera-
tions satisfy the following axioms. In the list below, u, v and w are arbitrary
vectors in V; α and β are scalars in F.

(1) (u + v)+w = u + (v +w); (Associativity of addition)
(2) u + v = v +u; (Commutativity of addition)
(3) There exists an element 0 ∈ V, called the zero vector , such that v+0 = v

for all v ∈ V; (Identity element of addition)
(4) For every v ∈ V, there exists an element −v ∈ V, called the additive

inverse of v , such that v + (−v) = 0; (Inverse elements of addition)
(5) α(u + v) = αu +αv ;

(Distributivity of scalar multiplication with respect to vector
addition)

(6) (α+β)u = αu +βu;
(Distributivity of scalar multiplication with respect to field addition)

(7) α(βu) = (αβ)u;
(Compatibility of scalar multiplication with field multiplication)

(8) 1v = v , where 1 denotes the multiplicative identity in F.
(Identity element of scalar multiplication)

E4M.NTA.MATH.HNUE 37



Subspaces, span, and basis
Again in analogue with theories of other algebraic objects, linear algebra

is interested in subsets of vector spaces that are vector spaces themselves.
Let W be a nonempty subset of a vector space V over a field F. If W is also

a vector space over F using the same addition and scalar multiplication
operations, then W is said to be a linear subspaces of V.

A necessary and sufficient condition for a nonempty subset W of a vector
space V over a field F to be a linear subspace of V is that W is closed under
addition and scalar multiplication, i.e, u+v ∈ W and αu ∈ W whenever u, v ∈
W and α ∈ F.

One of most common ways of forming a subspace is to take span of a
given vectors. Let V be a vector space V over a field F. Let S = {v1, v2, . . . , vn}
be a set of vectors V. Then any vector v of V of the form

v = α1v1 +α2v2 +·· ·+αnαn ,

where α1,α2, . . . ,αn are scalars, is called a linear combination of the vectors
v1, v2, . . . , vn. The set of all linear combinations of vectors v1, v2, . . . , vn forms
a subspace of V, called the subspace spaned (or generated) by S and de-
noted by Span(S) or < S >. Symbolically,

Span(S) = {α1v1 +α2v2 +·· ·+αnαn | αi ∈ F, i = 1, . . . ,n}.

Clearly, Span(S) is the smallest subspace of V which contains S.
In general, there may be many ways to express a vector of Span(S) as a

linear combination of vectors v1, v2, . . . , vn. The question that whether the
expressions is unique leads to the following definitions.

A finite set {v1, v2, . . . , vn} of vectors of V is said to be linearly dependent
if there exist scalars α1,α2, . . . ,αn, not all zero, such that

α1v1 +α2v2 +·· ·+αn vn = 0.

The set {v1, v2, . . . , vn} is said to be linearly independent it is not linearly
dependent, that is, the equality

α1v1 +α2v2 +·· ·+αn vn = 0 implies α1 = α2 = ·· · = αn = 0.

By convention, we agree that the empty set is always linearly independent.
We can define linear dependence or independence for infinite sets of

vectors. Let S be a infinite set of a vector space V. We say S is linearly in-
dependent if every finite subset of S is linearly independent, otherwise the
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set is said to be linearly dependent , i.e., an infinite set of vectors of V is
linearly dependent iff a least one finite subset of it is linearly dependent.

What should we mean by the span of S in the case of S being an infinite
set of V? The difficulty is this: It is not always possible to assign a vector
as the value of an infinite linear combination α1v1 +α2v2 + ·· · in a consis-
tent way. In algebra, it is customary to speak only of linear combination of
finitely many vectors. Therefore, the span of an infinite set S must be inter-
preted as the set of those vector v which are linear combinations of finitely
many elements of S:

v = α1v1 +α2v2 +·· ·+αk vk , vk ∈ S,αk ∈ F.

The number k is allowed to be arbitrary large, depending on the vector v .
Let S be a (infinite or not) subset of a vector space V. If S is linearly inde-

pendent and Span(S) = V, then any vector of V can be written uniquely as
a linear combination of vectors in S. In this case, the set S is called a basis
for the vector space V.

It can be proved that, if a vector space V is spaned by a finite set, then
any two bases for V contain the same number of vectors. This number is
called the dimension of V, denoted by dim(V).

Any set of vectors that spans V contains a basis, and any linearly inde-
pendent set of vectors in V can be extended to a basis. It turns out that if
we accept the axiom of choice, every vector space has a basis; nevertheless,
this basis may be unnatural, and indeed, may not even be constructable.
For instance, there exists a basis for the real numbers considered as a vec-
tor space over the rationals, but no explicit basis has been constructed.

Linear transformations
Similarly as in the theory of other algebraic structures, linear algebra

studies mappings between vector spaces that preserve the vector-space
structure. Given two vector spaces V and W over a field F, a linear trans-
formation (also called linear map, linear mapping or linear operator) is
a map T : V → W that is compatible with addition and scalar multiplication:

T(u + v) = T(u)+T(v), T(αu) = αT(u)

for any vectors u, v ∈ V and a scalar α ∈ F.
When a bijective linear mapping exists between two vector spaces, we

say that the two spaces are isomorphic. Because an isomorphism pre-
serves linear structure, two isomorphic vector spaces are "essentially the
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same" from the linear algebra point of view. If a mapping is not an isomor-
phism, linear algebra is interested in finding its range (or image) and the
set of elements that get mapped to zero, called the kernel of the mapping.
Matrices of linear transformations

Let V be a vector space of dimension n. An ordered basis for V is an or-
dered n-tuples (v1, v2, . . . , vn) of vectors for which the set {v1, v2, . . . , vn} is a
basis of a vector space V.

Let B = (v1, v2, . . . , vn) be an ordered basis for V. Then for each v ∈ V there
is a unique ordered n-tuple (α1,α2, . . . ,αn) of scalars for which

v = α1v1 +α2v2 +·· ·+αn vn .

The n-tuple (α1,α2, . . . ,αn) is called the coordinate of the vector v with re-
spect to the ordered basis B.

Now we can define the coordinate map ΦB : V → Fn by

ΦB(v) = [v]B =


α1

α2
...
αn

 .

The column vector [v]B is called the coordinate vector (or coordinate ma-
trix) of v with respect to the ordered basis B. Each vector v of V determines
and is determined by its coordinate vector.

Let B = (v1, v2, . . . , vn) and E = (w1, w2, . . . , wn) be bases for vector spaces V
and W, respectively. Let T be a linear transformation from V to W. Suppose
that

T(v j ) = a1 j w1 +a2 j w2 +·· ·+am j wm , j = 1, . . . ,n.

Then the m ×n matrix

A = (ai j )i=1,...,m; j=1,...,n =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


is called the matrix of f with respect to the ordered bases B and E . Differ-
ent choices of the ordered bases leads to different matrices. For any v in V
it holds that

[T(v)]B = A[v]E .

Thus, each linear transformation from V into W is determined by its ma-
trix.
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Exercise 7.1. Fill in each blank with a suitable mathematical term from the
box.

invertible / isomorphic / isomorphism / square / eigenvalue /
eigenvector / invariant / characteristic /

a) The matrix of a linear operator T from a finite-dimensional vector space
V into itself is a . . . . . . . . . . matrix.

b) Let T : V → V be a linear operator on a vector space. A subspace W of V
is called . . . . . . . . . . under T if T(W) ⊂ W.

c) Let T : V → V be a linear operator on a vector space. If there are a scalar
λ and a nonzero vector v such that T(v) = λv , then λ is called an . . . . . . . . . .
of T. The vector v is called an . . . . . . . . . . of T.

d) A square matrix A is . . . . . . . . . . iff det A 6= 0.

e) Let A be a square matrix. Then the . . . . . . . . . . polynomial of A is defined
by P(λ) = det(λI−A), where I be the identical matrix with the same size of
A.

f ) A linear operator T from a finite-dimensional vector space V into itself
is a . . . . . . . . . . if and only if its determinant is nonzero.

2. Speaking and writing

Exercise 7.2. Complete the following sentences/paragraphs.

a) Any subset of a linearly independent set a vector space V is . . . . . . . . . . .
. . . . . . . . . . . .

b) Two vectors are . . . . . . . . . . . . . . . . . . . . . . iff one is a scalar multiple of
the other.

Exercise 7.3. Translate the following sentences/paragraphs into English.

a) Giao của một họ những không gian vectơ con của một không gian vectơ
V cũng là một không gian vectơ con của V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b) Giả sử V là một không gian vector hữu hạn chiều. Nếu L là một tập con
độc lập tuyến tính của V thì ta có thể bổ sung thêm những vector vào tập L
để được một cơ sở của V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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c) Nếu W là một không gian con của không gian vector hữu hạn chiều V
thì W cũng hữu hạn chiều và dimW É dimV. Hơn nữa, dimW = dimV khi và
chỉ khi W = V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d) Mỗi không gian vector n chiều trên trường F đều đồng cấu với không
gian Fn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e) Giả sử A và B là hai ma trận. Ta chỉ có thể thực hiện phép cộng A+B khi
hai ma trận A và B có cùng số dòng và cùng số cột. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f ) Đa thức đặc trưng của toán tử tuyến tính T trên một không gian hữu
hạn chiều V không phụ thuộc vào việc chọn cơ sở của V. . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g) Các giá trị riêng của toán tử tuyến tính T là nghiệm của đa thức đặc
trưng của nó. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h) Giả sử T một toán tử tuyến tính từ không gian vectơ hữu hạn chiều V
vào chính nó. Các khẳng định sau là tương đương

i) T là khả ngược;
ii) T là đơn ánh;
ii) T là toàn ánh.
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i) Giả sử V là một không gian vector trên trường số phức C và T là một toán
tử tuyến tính trên V. Khi đó T có ít nhất một giá trị riêng. . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Unit 8. Analytical Geometry

Unit 9. Combination and Probability

Unit 10. Functions of a Complex Variable.

Unit 11. Metric Spaces

Unit 12. Review
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APPENDICES

A. Reading mathematical symbols

A-1. Logic and sets

Symbol How to read
P∧Q P and Q; the conjunction of P and Q
P∨Q P or Q; the disjunction of P and Q
P ⇒ Q P implies Q; if P then Q; Q is implied by P
P ⇔ Q P if and only if Q; P is equivalent to Q; P and Q are equiva-

lent
¬P not P

a ∈ A a is an element/a member of (the set capital) A; a belongs
to A; x is in A

a 6∈ A a is not an element of A; a does not belong to A; a not be-
longing to A

; (the) empty set
A = {a,b,c} A is the set consisting elements a, b, c
A = {x | · · · } A is the set of all x such that · · ·

A ⊂ B A is contained in B; A is a subset of B
A ⊃ B A contains B; A is a superset of B
A∪B the union of A and B; A union B
A∩B the intersection of A and B, A intersect B; A intersected with

B
A\B A minus B; the difference between A and B
Ac , A the complement of A; capital A c; capital A bar
A×B A times B; A cross B; the cartesian product of A and B
(a,b) ordered pair a b
n⋃

k=1
Ak the union of Ak for k from 1 to n
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Symbol How to read⋂
α∈I

Aα the intersection of Aα for α belonging to I

n∏
k=1

Ak the cartesian product of Ak for k from 1 to n

∀x ∈ A for all (for every) x in A (such that) ...
∃x ∈ A there exists (there is) x in A (such that) ...
∃!x ∈ A there exists (there is) a unique x in A (such that) ...
6 ∃x ∈ A there is no x in A (such that) ...

A-2. Arithmetic

Integers

0 zero
1 one
2 two
3 three
4 four
5 five
6 six
7 seven
8 eight
9 nine

10 ten
11 eleven
12 twelve
13 thirteen
14 fourteen
15 fifteen
16 sixteen
17 seventeen
18 eighteen
19 nineteen

20 twenty
21 twenty-one
22 twenty-two
30 thirty
40 forty
50 fifty
60 sixty
70 seventy
80 eighty
90 ninety

100 one hundred
800 eight hundred (not hundreds)
245 two hundred and forty-five

−902 minus nine hundred and two
1 000 one thousand

51 000 fifty-one thousand
315 401 three hundred and fifteen thousand four hundred

and one
2 000 000 two million

999 999 000 nine hundred and ninety-nine million nine hun-
dred and ninety-nine thousand

3 000 000 000 three billion; three thousand million
5 000 000 000 000 five trillion; five thousand billion
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Ordinal numbers

0th zeroth/noughth
1st first
2nd second
3rd third
4th fourth
5th fifth
6th sixth
7th seventh
8th eighth
9th ninth

10th tenth
11th eleventh
12th twelfth
13th thirteenth
14th fourteenth
15th fifteenth
16th sixteenth
17th seventeenth
18th eighteenth
19th nineteenth

20th twentieth
21st twenty-first
22sd twenty-second
23rd twenty-three
24th twenty-fourth
30th thirtieth
40th fortieth
50th fiftieth
80th eightieth
90th ninetieth

Fractions (Rational numbers)

1
2 one half; one over two
1
3 one third; one over three
1
4 one quarter; one fourth
1
5 one fifth; one over five
1

10 one tenth; one over ten
1

17 one seventeenth
1

21 one twenty-first
1

32 one thirty-second
1

43 one forty-third
1

54 one fifty-fourth

1 1
2 one and a half

3 1
3 three and one third

7
2 seven halves; seven over two
2
3 two thirds; two over three
3
4 three quarters/three fourths
2
5 two fifths; two over five
9

10 nine tenths; nine over ten
2

27 two twenty-sevenths
5

21 five twenty-firsts
3

32 three thirty-seconds
10
43 ten forty-thirds; ten over forty-three
5

54 five fifty-fourths; five over fifty-four

5 3
4 five and three quarters

7 2
5 seven and two fifths

Real and complex numbers

0.03 nought point zero three; nought point oh oh three;
three thousandths
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−0.401 minus nought point four zero one

109.25 one hundred and nine point two five

−2.3×10−10 minus two point three times ten to the (power of)
minus ten

1.02×106 one point zero two times ten to the (power of) 6

i i

1−3i one minus three i

x + yi x plus y i

3− i the (complex) conjugate of three minus i

+ the addition sign

− the subtraction sign

· or × the multiplication sign

÷ the division sign

= the equality sign

a = b a equals b; a is equal to b

a 6= b a is not equal to b; a does not equal b; a is different
from b

a ≈ b a is approximately equal to b

a +b a plus b

a −b a minus b

a ±b a plus or minus b

a.b ab; a times b; a multiplied by b
a
b ; a/b a over b; a divided by b

−a minus a; negative a; the negative of a; the opposite
of a

±a plus or minus a

a < b a (is) less than b

a > b a (is) greater than b

a É b a (is) less than or equal to b; b (is) not less than a

a Ê b a (is) greater than or equal to b; a (is) not less than
b

48 E4M.NTA.MATH.HNUE



a < b < c a is less than b is less than c; b is greater than a and
is less than c

a É b < c a is less than or equal to b is less than c; b is not
less than a and is less than c

a ¿ b a is much less than b

a À b a is much greater than b

ab a to the b; a (raised) to the power of b; a to the b-th
power; a raised by the exponent of b

x2 x squared

x3 x cubed

a−b a to the (power of) minus b

x−1; 1
x x to the minus one; (the) reciprocal of x; x inversep

x (the) square root of x
3
p

x (the) cubic root of x
4
p

x (the) fourth root of x
n
p

x (the) n-th root of x

n! n factorial

(a +b)c a plus b all times (multiplied by) c; a plus b in
parentheses times (multiplied by) c

(a +b)2 a plus b all squared, a plus b in parentheses
squared(a

b

)2
a over b all squared

a−b
c a minus b all over (divided by) c

(bl abl a) · (bl bl ) bl abl a; the whole times blbl
bl abl a

bl bl
bl abl a; the whole divided by bl bl

|x| absolute value of x (if x is a real number)

|z| modulus of z (if z is a complex number)

Re(z) the real part of z

Im(z) the imaginary part of z

5% 5 percent

30◦ 30 degrees
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xk x k; x subscript k; x sub k; x suffix k

xk x super (superscript) k (if k is an index; not expo-
nent!)

xk j x k j ; x subscript k j ; x sub k j

x j
k x k j ; x subscript k superscript j

k a a pre-subscript k
k a a pre-superscript k

a a bar; a overbar;

â a hat

ã a tilde

1, . . . ,n or 1,n 1 (up) to n

x1; . . . ; xn x 1 up to x n
n∑

k=1
ak

sum k equals 1 to n of a (sub) k;
sum for k (running) from 1 to n of a (sub) k

∞∑
k=1

an the sum from 1 to infinite of an∏n
k=1 ak product for k (running) from 1 to n of a (sub) k

A-3. Functions

Symbol How to read

f : X → Y (a function) f from X to Y

x 7→ y x maps to y ; x is sent/mapped to y

f (x) f x; f of x; the function f of x

f (x, y) f of x (comma) y

f (2x;3y) f of two x (comma) three y

f (x1, x2, . . . , xn) f of x 1 x 2 up to x n

f −1 the inverse (function) of f ; f inverse

f (A) the image of A (under f ); f of A;

f −1(A) the inverse image of A (under f ); f inverse of
A
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Symbol How to read

g ◦ f g circle f ; g composed with f ; the compos-
ite/composition of f and g

ax a to the x

ex ,exp(x) exponential of x; e to the x

loga x logarithm to the base (or with base, or in
base) a of x

log x, lg x log of x; common (or decadic, or decimal)
logarithm of x

ln x natural logarithm of x; Napierian logarithm
of x

sin x sine x

cos x cosine x

tan x tan x

arcsin x arc sine x

sinh x hyperbolic sine x

A-4. Limits, derivatives and integrals

Symbol How to read

(a,b) the open interval from a to b

[a,b] the closed interval from a to b

(a,b] the (half-open) interval from a to b excluding
a; including b

∞,±∞ infinity, plus/minus infinity

un → a u n tends to/converges to/approachs a

x → a x tends to/goes to/approachs a

lim
x→a

f (x) (the) limit of f (of) x as x tends to/goes
to/approachs a

f (x) → l as x → a f (x) approachs (or converges to/ is conver-
gent to) l as x tends to/goes to/approachs a

lim
x→a+ f (x) the limit of f of x as x approachs a from

above (or from the right)
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Symbol How to read

lim
x→a− f (x) the limit of f of x as x approachs a from be-

low (or from the left)

f = o(g ) f is litle oh of g

f = O(g ) f is big oh of g

f ′ f prime; f dashed; (the first) derivative of f

f ′′ f double prime; f double dashed; the second
derivative of f

f (3) the third derivative of f

f (n) the n-th derivative of f
d f
d x d f by d x; the derivative of f by x

d 2 f
d x2 d squared f by d x squared; the second

derivative of f by x
∂ f
∂x partial d f by d x; the partial derivative of f

by x (with respect to x)

∂x f partial d x f ; derivative of f with respect to x
∂2 f
∂x2 partial d squared f by d x squared; the sec-

ond partial derivative of f by x (with respect
to x)

∂2 f
∂x∂y ???

∇ f nabla f ; the gradient of f

∆ f delta f

div f divergence of f∫
f (x)d x indefinite integral of f ; antiderivative of f∫ b

a f (x)d x the integral from a to b of f (of) x d xÎ
D f (x, y)d xd y

the double integral over (the domain) D of f
of x y d x d yÐ

D the triple integral over (the domain) D∫
L f (x)d s the line/path/curve integral of f along the

path/curve L∮
C f d s the contour integral of f over/around the

contour/closed curve C
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A-5. Number theory

k|n n is divisible by k; k divides n

[x] the integer part of x

Zn the set of integers modulo n

A-6. Linear algebra

||x|| the norm of x

AT A transpose; the transpose of A

A−1 A inverse; the inverse of A

det A the determinant of A

A-7. Geometrics

(a,b) the point a b

AB segment AB; line AB; length of segment AB
−→a ,

−→
AB vector a; vector A B

∠α angle alpha

∠ABC, �ABC angle A B C

a ≡ b a is identical with b

a 6≡ b a is not identical with b

a ⊥ b a is perpendicular to b; a and b are perpendicular to
each other

a ∥ b (the line) a is parallel to (the line) b; (two) (lines) a
and b are parallel to each other

a ∼ b a is similar to b; a and b are similar to each other

a ∼= b a is congruent to b; a and b are congruent to each
other

〈a,b〉 scalar product of (vectors) a and b

[a,b] vector product of (vectors) a and b

4ABC triangle A B C; triangle with vertices A B C



A-8. Greek letters (used in mathematics)

Lowercase letters

Letter Name Pronounce

α alpha "ælf@

β beta "beit@/"bit@

γ gamma "gæm@

δ delta "dElt@

ε,ε epsilon "Eps@­lon/Ep"sail@n

ζ zeta "zeit@/"zit@

η eta "eit@/"it@

θ,ϑ theta "Teit@/"Tit@

ι iota ai"oUt@

κ kappa "kæp@

λ lambda "læmd@

µ mu mju:

ν nu nju:

ξ xi zai/sai Greek: ksi

π,$ pi pai

ρ,% rho roU

σ,ς sigma "sigm@

τ tau taU

φ,ϕ phi fai

χ chi kai

ψ psi sai/psai

υ upsilon "2ps@­lon/2p"sail@n

ω omega oU"mig@/oU"meig@

Capital letters

Letter Name

Λ Lambda

Υ Upsilon

Γ Gamma

Ξ Xi

Φ Phi

∆ Delta

Π Pi

Ψ Psi

Θ Theta

Σ Sigma

Ω Omega
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