Practice 1 **Question 1.** Fill in each blank with a suitable word. Some words are given in the following box. approaches / area / bounded / conjugate / continuous / differentiable / equal / equals / form / graph / infinite / infinitely / maximum / minimum / modulus / satisfying / satisfies / second / slope / tend / volume | a) | The function f is continuous at some point c of its domain if the limit of $f(x)$ as x c exists and is to $f(c)$. | |----|---| | b) | If the real-valued function f is on the closed interval $[a,b]$ and k is some number between $f(a)$ and $f(b)$, then there is some number c in $[a,b]$ such that $f(c)=k$. | | c) | If a function f is defined on a closed interval $[a,b]$ and is continuous there, then the function attains its , i.e. there exists $c \in [a,b]$ with $f(c) \le f(x)$ for all $x \in [a,b]$. | | d) | The definite integral $\int_{a}^{b} f(x) dx$ is equal to the of the region in the xy -plane | | | bounded by the of f , the x -axis, and the vertical lines $x = a$ and $x = b$. | | e) | For a real-valued function of a single real variable, the derivative at a point equals the of the tangent line to the graph of the function at that point. | | f) | Let f be a function, and let $f'(x)$ be its derivative. The derivative of $f'(x)$ (if i has one) is written $f''(x)$ and is called the derivative of f . | | g) | On the real line, every polynomial function is differentiable. | | h) | A complex number is a number that can be expressed in the $a+ib$, where a and b are real numbers and i is the imaginary unit, $i^2 = -1$. | | i) | The complex of the complex number $z = x + yi$ is defined to be $x - yi$. | | j) | The of a complex number $z = x + yi$ is $r = \sqrt{x^2 + y^2}$. | | Q | uestion 2. Translate the following paragraphs into Vietnamese. | | a) | A group is a non-empty set G with one binary operation $(a, b) \mapsto ab$ that satisfies the following axioms (the operation being written as multiplication): 1) the operation is associative, i.e. $(ab)c = a(bc)$ for any a , b and c in G ; | | | 2) the operation admits a unit, i.e. G has an element e , known as the unit element, such tha $ae = ea = a$ for any a in G ; | | | 3) the operation admits inverse elements, i.e. for any a in G there exists an element x in G , said to be inverse to a , such that $ax = xa = e$. | | | It follows from this definition that the unit element in any group is unique, that the elemen inverse to any given element in the group is unique. | D) | are often encountered in mathematics and their applications; examples of such operations are multiplication of numbers, addition of vectors, successive performance (composition) of transformations, etc. The concept of a group is historically one of the first examples of abstract algebraic systems and served, in many respects, as a model for the restructuring of other mathematical disciplines at the turn into the 20th century, as a result of which the concept of a mathematical system (a structure) has become a fundamental concept in mathematics. | |----|---| c) | A complex number is a number of the form $z = x + iy$, where x and y are real numbers and $i = \sqrt{-1}$ is the so-called imaginary unit, that is, a number whose square is equal to -1 (in engineering literature, the notation $j = \sqrt{-1}$ is also used). x is called the real part of the complex number z and y its imaginary part (written $x = \text{Re}z$, $y = \text{Im}z$). The real numbers can be regarded as special complex numbers, namely those with $y = 0$. Complex numbers that are not real, that is, for which $y \neq 0$, are sometimes called imaginary numbers. The complicated historical process of the development of the notion of a complex number is reflected in the above terminology which is mainly of traditional origin. Algebraically speaking, a complex number is an element of the (algebraic) extension $\mathbb C$ of the field of real numbers $\mathbb R$ obtained by the adjunction to the field $\mathbb R$ of a root i of the polynomial $x^2 + 1$. The field $\mathbb C$ obtained in this way is called the field of complex numbers or the complex number field. The most important property of the field $\mathbb C$ is that it is algebraically closed, that is, any polynomial with coefficients in $\mathbb C$ splits into linear factors. The property of being algebraically closed can be expressed in other words by saying that any polynomial of degree $n \geqslant 1$ with coefficients in $\mathbb C$ has at least one root in $\mathbb C$ (the d'Alembert-Gauss theorem or fundamental theorem of algebra). | Qι | uestion 3. Translate the following sentences/paragraphs into English. | |------------|---| | a) | Giả sử A là một tập hợp khác rỗng. Mỗi ánh xạ $f: A \times A \to A$ được gọi là một phép toán hai ngôi trên A. | | | | | b) | Mỗi đa thức bậc $n\ (n \ge 1)$ với hệ số phức có đúng n nghiệm phức (tính cả bội). | | | | | c) | Phép toán hai ngôi $(a,b)\mapsto ab$ trên tập hợp A được gọi là có tính chất giao hoán nếu $ab=ba$ với mọi a,b trong A. | | | | | d) | Giả sử X là một tập hợp khác rỗng. Ánh xạ $d: X \times X \to \mathbb{R}$ được gọi là một metric trên X nếu nó thoả mãn các tính chất sau đây | | | (i) d(x, y) ≥ 0, với mọi x, y ∈ X, và d(x, y) = 0 ⇔ x = y; (ii) d(x, y) = d(y, x) với mọi x, y ∈ X; (iii) d(x, y) ≤ d(x, z) + d(z, y) với mọi x, y, z ∈ X (bất đẳng thức tam giác). | | | (iii) w(w,y) < w(w,x) + w(z,y) vor iii \(vi i a a a a a a a a a a a a a a a a a a | | | | | | | | | | | | | | e) | Cho tam giác ABC có trung điểm các cạnh AB, BC, CA lần lượt là M(-1; -1), N(1; 9), P(9; 1). 1) Lập phương trình các cạnh của tam giác. 2) Lập phương trình các đường trung trực của tam giác. | | | 3) Tìm toạ độ tâm đường tròn ngoại tiếp tam giác ABC. | | | | | | | | | | | | |